Click for next page ( 215


The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement



Below are the first 10 and last 10 pages of uncorrected machine-read text (when available) of this chapter, followed by the top 30 algorithmically extracted key phrases from the chapter as a whole.
Intended to provide our own search engines and external engines with highly rich, chapter-representative searchable text on the opening pages of each chapter. Because it is UNCORRECTED material, please consider the following text as a useful but insufficient proxy for the authoritative book pages.

Do not use for reproduction, copying, pasting, or reading; exclusively for search engines.

OCR for page 214

OCR for page 214
HERBERT SPENCER HARNED December 2, ~ 888 July 29, ~ 969 BY JULIAN M. STURTEVANT HERBERT SPENCER HARNED started graduate work in chemistry at the University of Pennsylvania shortly after the introduction into this country of the theoretical and mathematical approach to chemical problems emboclied in physical chemistry. His doctoral research was in preparative inorganic chemistry under the direction of Edgar F. Smith, but before he started this work, he spent a brief period in the laboratory of Joel H. Hildebrand. This apprenticeship with Hildebrand appears to have played a major role in steering his interests away from classical chemistry, toward the newer physics-oriented discipline. Hildebrand, after obtaining his Ph.D. at Pennsylvania in 1906, hack studied with Walther Nernst in Berlin, and after returning to Philaclelphia, had instituted a program of re- search and instruction in physical chemistry. In Hildebrand's laboratory, Harned worked on a titrunetric method for the determination of magnesia in limestone, and a joint publica- tion, Harned's first, resulted from this work in 1912. This research involved the use of the hydrogen electrocle, with measurements of potential to an accuracy of only ~O-2 volt. Harned was confident that measurements with this electrode could be carried to much better levels of accuracy, and an important part of his later scientific work consisted in show- 215

OCR for page 214
216 B I OG RA P H I C A L M E M O I RS ing that the hydrogen electrode could be utilized in a wide variety of electrochemical cells having potentials stable and reproducible to i0-4, or even 10-5 volt. This drive toward experimental perfection and accuracy characterized Har- ned's long-continucc} studies of electrolytic solutions. His pri- vately states] aim was to obtain thermodynamic data that could stanc! unchallenged! for decades, and he certainly achieved this aim in abundant measure. Herbie, as he was always known to his countless friends, was born on December 2, IS8S, in Camden, New Jersey, the son of Augusta Anna Traube! Harned and Thomas Biggs Harned. Herbie was the youngest child in the family, with a sister, Anna, ten years older than he, ant] a brother, Thomas, . SIX years 11S SenlOr. Herbie's mother and father, as well as other Harneds, had been very close to the poet Walt Whitman. Herbie's mother was hostess at the Whitman dinners which were held every Sunciay night in the Harned home. She was the one who held the Whitman coterie together, ant] the hostess who sat next to the poet at his seventieth birthday party. Although Herbie was only four when Whitman cried, and one of his few remembrances of Whitman was his being frightened by the poet's beard, he was always very proud of his parents' inti- macy with the poet. Herbie's lifelong interest in literature was doubtless in large part clue to the influence of parents and relatives who were intimate with literary figures such as Whitman. When Herbie was five years old, the family moved to Germantown, an outlying section of Philadelphia. His father established a successful law business in downtown Philadel- phia. The Germantown household was a lively place, with a succession of dinner parties and dances. Although Herbie, as the youngest member of the family, was for many years only a spectator of these events, the constant presence of guests,

OCR for page 214
HERBERT SPENCER HARNED 217 many of them distinguished individuals, made a deep im- presslon on elm. Herbie was a boy of slight build, but under the tutelage of his brother Tom he developed early a knack for sports requiring sharp eyes and good coordination to the point where he became a match for boys of larger physique, espe- cially in tennis and cricket. The family lived close to the Germantown Cricket Club, where excellent instruction ant! facilities in a wide variety of sports were available. Among Herbie's playmates in Germantown were several boys, includ- ing William Tilden, who later became outstanding athletes. Herbie was fond of telling how he defeater! Bill Tilden at tennis when he was fourteen years oIcI, and Bill was eleven. At about this time, Herbie began to show a real talent for cricket, ant! he devoted much time to the sport until he was twenty-six. He played on various teams, in prep school and in college, and on f~rst-cIass amateur teams organizer! at the Germantown Cricket Club. He playecl against numerous American teams, as well as against outstanding English, Canadian, Australian, and Bermudan teams, both in this country ant] abroad. Once in a match in Bermuda, he batted an entire inning, making ~ ~ 3 runs not out, his greatest achievement in the sport. Herbie felt that cricket taught him a great clear that carried over into his professional life. It emphasized fair play and good sportsmanship; it showed him that by hare! practice with careful attention to form, he couIc! overcome the disadvantage of his relatively small stature; and it required playing not only on the team, but also for the team. Herbie's father became seriously ill in 1910, and never fully recovered his health, with the result that the family circumstances became very straightened. It is a good inclica- tion of the calibre of this man that although he was going heavily into debt to keep his family together, he nevertheless

OCR for page 214
218 BIOGRAPHICAL MEMOIRS donated his very valuable collection of"Whitmania" to the Library of Congress. In 1914, Herbie's mother, to whom Herbie was most cleeply attached, diect of cancer. The home in Germantown ant! other properties were sold to retire debts, and the family moved to an apartment in German- town. Since Herbie's elcler brother had gone to Chicago, the responsibility of maintaining the family fell primarily on Herbie. It was this responsibility, according to his own ac- count, that stimulates! him to adopt a very serious and deter- mined approach to his preparation for a professional life. In the fall of 1915, Herbie met Dorothy Foltz of Chestnut Hill. A year later they became engaged, and they were mar- riec! on September 8, 1917. Dorothy, who survives Herbie, prover! to be the ideal wife for a young man deeply involved in establishing a scientific career, with the long hours of extra-familial activity involved in that pursuit. Herbie's father, by then nearly seventy, lived with the young couple, and a close relationship soon developer! between him and his daughter-in-law. Herbie became a captain in the Chemical Warfare Service in June 1918. After two months at the cws establishment at the American University in Washington, during which he wrote a long report on phosgene, he was sent to France. A period of field training was followed by duty at the central research laboratory of the American Expeditionary Force near Paris. A number of lasting friendships were made with chemists stationed there. A study of the kinetics of adsorption of gases on charcoal which Harned started at this laboratory was completed after his return to the States. This was a pio- neering effort in this field ant! has been frequently cited. Herbie's father died in September 1921. A very close father-son relation had cleveloped, most particularly since Herbie's return from France, and this was another keenly felt tragecly.

OCR for page 214
HERBER r SPENCER HARNED 219 To return now to Harned's educational and professional careers, it is evident that he received much preschool training at home. He has particularly singlecl out as of incalculable value to him the instruction his mother gave him in arithme- tic before he went to school at the age of nearly seven. His success in learning arithmetic gave him confidence in un- clerstancling any kinc! of school work. After three years at a small school run by two Misses Knight, he was sent to the Penn Charter School, an excellent Quaker preparatory school in Philadelphia, where his course was strictly classical, with no hint of science. He has stated that his teachers there were all excellent, and that after his strict training there, he found his college courses to be quite easy. In 1905 Herbie entered the University of Pennsylvania, where in his freshman year, although he continuer! with his classical studies including Greek ant! Latin, he had his first contact with science. He took the course in chemistry and was immensely impressed by the accuracy of the measurements which fixed the composition of air and water to the extent that he decided to pursue a career in science. By the time he became an upperclassman, his two major interests were chemistry and literature, the latter from an entirely nonpro- fessional point of view. Harned graduated from college in 1909, and, as noted above, stayed on at Pennsylvania for graduate work in chem- istry. Three of his teachers in graduate school he has singled out as having had an especially great influence on him. Two of these, Edgar F. Smith an(l Joe! H. HildebrancI, have al- rea(ly been mentioned. The third was a philosopher, Edgar Singer. His course on the history of modern philosophy was considered by Harned to be the best seminar course he ever had, and lee! him to take several adclitional courses with Singer. His experience in these courses gave him a viewpoint which significantly motivated his later professional career:

OCR for page 214
220 BIOGRAPHICAL MEMOIRS search for the most fundamental quantity you can find and then measure it with the highest accuracy you can achieve. Some years later he discoverer! this quantity, the chemical potential, in the work of [osiah Willard Gibbs, and the major portion of his research career involvecl the accurate measure- ment of this quantity. In summarizing his studies in philosophy, Harned wrote that after being tossed this way and that by the conflicting views of nineteenth century philosophical thought, there was only one mode of thought and action to which he could subscribe. This was the quantitative method of science, as exemplified in the work of Copernicus, Galileo, Kepler and Newton. There was beautifully illustrates! here the impor- tance not only of fundamental laws and theories, but also of accurate observations and measurements. Harnecl obtained his Ph.D. in 1913. In that same year, Hildebrand left Pennsylvania to join the faculty at the Uni- versity of California at Berkeley, and Harned was macle an instructor and head of the Physical Chemistry Division at Pennsylvania. As was more frequently the case in those clays than now, he was saddled with an extremely heavy load of undergraduate ant! graduate teaching. There were approxi- mately forty students in his undergracluate course in physical chemistry, and since the laboratory only accommodated ten students, he hac! to clivicle the group into four sections, each of which spent many hours a week in the laboratory. All of this, combined with graduate lectures, constituted a tough assignment, carrier! with far 1~.~s heln from teaching assistants than is customary tociay. r _O ~ It is a clear measure of the strength of Harne(l's dedica- tion to research that within two years, despite these formida- ble teaching~duties, and working entirely on his own, he was able to publish a pioneering twenty-two page paper on the precise (+ ]0-4 volt) utilization of the hydrogen and calome!

OCR for page 214
HERBERT SPENCER HARNED 221 electrodes in the determination of the activities of hydrogen and hydroxide ions in neutral salt solutions. This paper, in which he showed without any doubt that the law of mass action was not applicable for calculating ionic equilibria in solutions of strong electrolytes, attracted much attention and spurred visits by chemists from other universities to his labo- ratory. All of this served to bolster his self confidence at the threshold of his career, and to confirm his belief that he had initiated an important program of research. It was evident to Harned that a definitive interpretation of the results obtained in this first work was hampered by the presence of small but unknown liquid junction potentials. In the following year, 1916, he published his first paper on electrolyte activities determined using cells without liquid junction, and he continued using such cells, in a steadily expanding diversity of applications, over the next forty-odd years. Harned wished to avoid too narrow a specialization at this period in his career. His papers on conductimetric titrations ~19~7 and 19~ 8) constituted the first utilizations in this coun- try of a conductance bridge in chemical analyses. Also in 1918, just before entering the army, he published his first paper in the field of reaction kinetics in solution. He re- turned briefly to reaction kinetics several times in later years, but as one may infer from remarks he made, not as fre- quently as he would have liked. Harned's remaining years at Pennsylvania became in- creasingly productive, and by the time he left there to go to Yale University in the fall of 192S, he had published thirty- four papers. After a long period of working alone, he finally began to have collaborators, both graduate students and peo- ple of more advanced standing. In 1924 Gosta AkerIof came from Sweden to his laboratory on the recommendation of Svante Arrhenius. He remained in close association with

OCR for page 214
222 BIOGRAPHICAL MEMOIRS Harned for more than twenty years at Pennsylvania and Yale, although he worked essentially indepenclently after receiving his Ph.D. In 1927 Robert A. Robinson came as a Common- wealth Fellow from Birmingham, EnglancI. He and Harned maintained throughout the rest of Harnect's career a close relation that culminated in the joint publication of a mono- graph on multicomponent electrolyte solutions in 1968. During these years, he made systematic measurements of the activity coefficients of strong acids and bases, in both dilute ant! concentrated solutions, in the presence of neutral salts. He discovered useful regularities in these systems, one of which has come to be known as Harnecl's rule. This states that in solutions of constant total ionic strength, the loga- rithm of the activity coefficient of one solute is clirectly pro- portional to the concentration of the other. This was to be a matter of continuing interest to him, and three of his last papers, published between 1959 anc! 1963, are concerned with the effect of temperature on such systems. It should be added that Harned was well aware that this rule is not uni- versal, and that caution must be exercised in its application. In this period he initiated his work on the thermodynam- ics of electrolytes in mixed solvents with a stucly of hydro- chioric acid in water-ethanol mixtures. This work was greatly extended in later years, culminating in a series of papers, publisher! from 1936 to 1939, concerning hydrochloric acic! in water-dioxan mixtures containing as much as 82 weight percent dioxan Dielectric constant about 10 at 25~. Harnecl has written that he regarcled the year 1927-28, his last year at Pennsylvania, as the most fruitful one in his scientific life. A graduate student, John M. Harris, ikerIof, Robinson, and he worked jointly on four separate topics: the use of amalgam electrodes in studying the thermodynamics of solutions of electrolytes; the thermodynamics of solutions of mixtures of electrolytes at high concentrations; the first

OCR for page 214
HERBERT SPENCER HARNED . . . 223 application of cells without liquid junction to determine the Ionization constants of weak electrolytes; and the investiga- tion of neutral salt effects in homogeneous catalysis. During this year, ideas anct methods were developed which were later widely employed not only in his laboratory, but in many others arounc! the world. Although his research was going very well, HarnecI deciclect to accept an offer from Yale. He felt that this move would significantly expand his research opportunities. There was available in the Sterling Chemistry Laboratory, then only five years old, what seemec! like almost unlimited space for his laboratories; he was assured of initial financial support in his research which quite surpassed that to which he was ac- customecl; and it seemed probable that he could expect to have a good group of graduate students as colleagues. Immecliately on arrival at Yale, Harned, in harmonious cooperation with the other physical chemists on the staff, carried through revision of the graduate program in physical chemistry. He was determined that the orientation of this program should be exclusively toward pure research, with a firm basis in the mathematical and theoretical aspects of the subject. He eliminates! everything in the nature of conven- tional undergraduate courses from the graduate program. Harned's arrival at Yale coinciclec! with the start of a vigor- ous university-wide expansion in plant and program. He has written very approvingly of what the president, James Row- land Angell, and the graduate dean, Wilbur Cross, accom- plishecl for the university, particularly in bringing about a remarkable upgrading of the graduate school. r shall take the liberty of inserting here some personal comments. ~ went to Yale as a graduate student in chemistry in 1927, and joined the staff in 1931. I therefore had fre- quent contact with Herbie until his retirement in 1957. There is no doubt that, despite the general growth of the University

OCR for page 214
224 BIOGRAPHICAL MEMOIRS referred to above, his own initially promising situation at Yale began to deteriorate a few years after he arriver! there as a result of decreasing financial and administrative support for his own research program and for physical chemistry in gen- eral. The Chemistry Department entered a period of decline relative to chemistry departments at other institutions and to other science departments at Yale. Fortunately, a goodly stream of graduate students continued in physical chemistry, most of whom worked with Harned. It is greatly to his credit that despite the cliff~culties inherent in the situation, he re- mainec! a very productive scientist. This period of relative quiescence of the Chemistry Department was enlivener! by a few very important events. The first of these Harned consiclerect to be the single most important thing he accomplished at Yale. In 1931 he received a letter from Lars Onsager stating that clue to financial exi- gencies, he was losing his post at Brown University. Within hours Harned hac! arranged the offer of a Sterling Fellow- ship to Onsager which, most fortunately for Yale, was ac- ceptecI. Needless to say, this fellowship was soon converted to a permanent position on the faculty. In 1945, largely through Harnecl's efforts, Raymond M. Fuoss was persuaded to leave the central research laboratory at General Electric to join the Yale faculty. His aciclition to the staff made certain the preeminence of Yale in the physical chemistry of electrolytes. In 1951, after the retirement of Arthur I. Hill as chair- man of the Chemistry Department, the university was most fortunate in persuading John G. Kirkwood to come from the California Institute of Technology to serve as chairman. There ensued a period of very healthy clevelopment of chem- istry at Yale which markocIly improved the atmosphere for Harned's last few years before retirement. Shortly after setting up his laboratories at Yale, Harned,

OCR for page 214
HERBERT SPENCER HARNED 235 With N. D. Embree. The temperature variation of ionization con- stants in aqueous solutions. I. Am. Chem. Soc., 56:105~53. 1935 Thermodynamic properties of uniunivalent halide mixtures in aqueous solution. I. Am. Chem. Soc., 57:186~73. With H. C. Thomas. Molal electrode potential of the silver-silver chloride electrode in methanol-water mixtures. I. Am. Chem. Soc.,57:1666~8. With W. I. Hamer. The thermodynamics of aqueous sulphuric acid solutions from electromotive force measurements. I. Am. Chem. Soc., 57:27-33. With W. I. Hamer. Molal electrode potentials and the reversible electromotive forces of the lead accumulator from 0 to 60. l. Am. Chem. Soc., 57:33-35. With G. E. Mannweiler. The thermodynamics of ionized water in sodium chloride solutions. I. Am. Chem. Soc., 57:1873-76. With N. D. Embree. Ionization constant of acetic acid in methyl alcohol-water mixtures from 0 to 40. I. Am. Chem. Soc., 57:1669-70. 1936 With H. C. Thomas. The thermodynamics of hydrochloric acid in methanol-water mixtures from electromotive force measure- ments. I. Am. Chem. Soc., 58:761~6. With A. S. Keston and D. G. Donelson. The thermodynamics of hydrobromic acid in aqueous solutions from electromotive force measurements. I. Am. Chem. Soc., 58:989-94. With J. O. Morrison. Thermodynamics of hydrochloric acid in dioxane-water mixtures from electromotive force measure- ments. I. Am. Chem. Soc., 58:1908-11. With G. L. Kazanjian. The ionization constant of acetic acid in dioxane-water mixtures. J. Am. Chem. Soc., 58:1912-15. With M. E. Fitzgerald. The thermodynamics of cadmium chloride in aqueous solution from electromotive force measurements. l. Am. Chem. Soc., 58:262~29. The general properties of a perfect electrochemical apparatus. In: Commentary on the Scientif c Writings of f. Willard Gibbs, ed. F. G. Donnan II and Arthur Haas, pp. 709-35. New Haven, Conn.: Yale Univ. Press.

OCR for page 214
236 BIOGRAPHICAL MEMOIRS 1937 With i. O. Morrison. A cell for the measurement of the thermody- namic properties of hydrochloric acid in dioxane-water mix- tures. Am. l. Sci., 33:161-73. Relative partial molal heat content of zinc sulphate in aqueous solution. I. Am. Chem. Soc., 59:360~1. With M. A. Cook. The thermodynamics of aqueous potassium hy- droxicle solutions from electromotive force measurements. I. Am. Chem. Soc., 59:49~500. With I. G. Donelson. The thermodynamics of ionized water in lithium bromide solutions. l. Am. Chem. Soc.., 59:1280-84. With M. A. Cook. The thermodynamics of aqueous potassium chlo- ricle solutions from electromotive force measurements. I. Am. Chem. Soc., 59: 1290-92. With F. C. Hickey. The ionization of acetic acid in aqueous sodium chloride solutions from 0 to 40. I. Am. Chem. Soc., 59: 1284~8. With F. C. Hickey. The hydrolysis of the acetate ion in sodium chloride solutions. I. Am. Chem. Soc., 59:1289-90. With M. A. Cook. The activity and osmotic coefficients of some hydroxide-chloride mixtures in aqueous solution. I. Am. Chem. Soc., 59:1890-95. With M. A. Cook. The ionic activity coefficient product and ioniza- tion of water in uniunivalent halide solutions. A summary. I. Am. Chem. Soc., 59:230~5. With F. C. Hickey. Salt action on the ionization of acetic acid and on the hydrolysis of the acetate ion. I. Am. Chem. Soc.,59:2303~. With G. C. Crawford. The thermodynamics of aqueous sodium bromide solutions from electromotive force measurements. I. Am. Chem. Soc., 59:1903-5. With C. G. Geary. The ionic activity coefficient product and ioniza- tion of water in barium chloride solutions from 0 to 50. J. Am. Chem. Soc., 59:2032-35. 1938 With C. Calmon. The thermodynamics of hydrochloric acid in dioxane-water mixtures from electromotive force measure- ments. II. Densities. I. Am. Chem. Soc., 60:33~35.

OCR for page 214
HERBERT SPENCER HARNED 237 The thermodynamics of hydrochloric acid in dioxane-water mix- tures from electromotive force measurements. III. Extrapola- tions according to the Gronwall-LaMer extension of the Debye and Huckel theory. I. Am. Chem. Soc., 60:33~39. With l. G. Donelson. The thermodynamics of hydrochloric acid in dioxane-water mixtures from electromotive force measure- ments. IV. Properties of the 20% dioxane-water mixtures. I. Am. Chem. Soc., 60:339-41. With I. G. Donelson. The thermodynamics of hydrochloric acid in dioxane-water mixtures from electromotive force measure- ments. V. 45% Dioxane-water mixtures. I. Am. Chem Soc., 60: 212~30. With C. Calmon. The thermodynamics of hydrochloric acid in dioxane-water mixtures from electromotive force measure- ments. VI. Extrapolation in 70% dioxane mixtures and stan- dard potentials. I. Am. Chem. Soc., 60:2130-33. With I. G. Donelson and C. Calmon. The thermodynamics of hy- drochloric acid in dioxane-water mixtures from electromotive force measurements. VII. Properties of the 70% mixtures. I. Am. Chem. Soc., 60:2131-35. Ions in solution. Present status of the thermodynamics of electro- lytic solutions. I. Comparison of thermodynamic properties of electrolytes determined by various methods. II. Weak electro- lytes. III. Electrolytes in nonaqueous solvent-water mixtures. IV. Calculation of the solubility of highly soluble salts in salt solutions by the method of ~kerlof. I. Franklin Inst., 225:623-59. With G. Akerlof. Electromotive forces. Oxidation-reduction poten- tials (1931-61. Annual Tables of Constants, no. 9. N.Y.: McGraw- Hill. 1939 With M. A. Cook. The thermodynamics of aqueous sodium chlo- ride from 0 to 40 from electromotive force measurements. J. Am. Chem. Soc., 61:495-97. With F. Walker and C. Calmon. The thermodynamics of hydro- chloric acid in dioxane-water mixtures from electromotive force measurements. VIII. Extrapolations in 82% dioxane mixtures and standard potentials. I. Am. Chem. Soc., 61:44-47.

OCR for page 214
238 BIOGRAPHICAL MEMOIRS With F. Walker. The thermodynamics of hydrochloric acid in dioxane-water mixtures from electromotive force measure- ments. IX. Properties of the 82% mixtures. l. Am. Chem. Soc., 61 :4~9. With B. B. Owen, l. O. Morrison, F. Walker, I. G. Donelson, and C. Calmon. The thermodynamics of hydrochloric acid in dioxane- water mixtures from electromotive force measurements. X. Summary and critique. I. Am. Chem. Soc., 61:49-54. With C. Calmon. The properties of electrolytes in mixtures of water and organic solvents. I. Hydrochloric acid in ethanol- and isopropanol-water mixtures of high dielectric constant. J. Am. Chem. Soc., 61:1491-94. With B. B. Owen. Determinations of the ionization and thermody- namic properties of weak electrolytes by means of cells without liquid junctions. Chem. Rev., 25:3145. Experimental studies of the ionization of acetic acid. J. Phys. Chem., 43:275~0. With L. D. Fallon. The properties of electrolytes in mixtures of water and organic solvents. II. Ionization constant of water in 20%,45% and 70% dioxane-water mixtures. l. Am. Chem. Soc., 61 :237~77. With L. D. Fallon. The properties of electrolytes in mixtures of water and organic solvents. III. Ionization constant of acetic acid in an 82% dioxane-water mixture. I. Am. Chem. Soc., 61: 2377-79. With E. C. Dreby. The properties of electrolytes in mixtures of water and organic solvents. IV. Transference numbers of hy- drochloric acid in water and dioxane-water mixtures from 0 to 50. J. Am. Chem. Soc., 61: 3113-20. With L. D. Fallon. The second ionization constant of oxalic acid from Oto50. }.Am. Chem.Soc., 61: 3111-13. 1940 With R. A. Robinson. Temperature variation of the ionization con- stants of weak electrolytes. Trans. Faraday Soc., 36: 973-78. 1941 With T. E. Dedell. The ionization constant of propionic acid in dioxane-water mixtures. J. Am. Chem. Soc., 63: 330~12.

OCR for page 214
HERBERT SPENCER HARNED 239 With R. S. Done. The ionization constant of formic acid in dioxane- water mixtures. I. Am. Chem. Soc., 63: 257~82. With R. A. Robinson. The activity coefficient of hydriodic acid at 25 from isopiestic vapour-pressure measurements. Trans. Faraday Soc., 37: 302-7. With A. M. Ross. The acid hydrolysis of methyl acetate in dioxane- water mixtures. I. Am. Chem. Soc., 63: 199~99. With S. R. Scholes. The ionization constant of HCO3 from 0 to 50. J. Am. Chem. Soc., 63: 1706-9. With R. A. Robinson. Some aspects of the thermodynamics of strong electrolytes from electromotive force and vapor pressure measurements. Chem. Rev., 28: 41~77. 1943 With C. M. Birdsall. The acidic ionization constant of glycine in dioxane-water solutions. l. Am. Chem. Soc., 65: 5~57. With R. Davis. The ionization constant of carbonic acid in water and the solubility of carbon dioxide in water and aqueous salt solu- tions from 0 to 50. I. Am. Chem. Soc., 65: 2030-37. With C. M. Birdsall. The basic ionization constant of glycine in dioxane-water solutions. I. Am. Chem. Soc., 65: 1117-19. With B. B. Owen. The Physical Chemistry of Electrolytic Solution. N.Y.: Reinhold Publishing. 612 pp. 1945 With F. T. Bonner. The first ionization of carbonic acid in aqueous solutions of sodium chloride.3. Am. Chem. Soc., 67: 102~31. With D. M. French. A conductance method for the determination of the diffusion coefficients of electrolytes. Ann. N.Y. Acad. Sci., 46: 267-81. 1946 With F. H. M. Nestler. The standard potential of the cell, H2|HCl~m)|AgCl-Ag, in 50% glycerol-water solution from 0 to 90. I. Am. Chem. Soc., 68: 665-66. With F. H. M. Nestler. The ionization constant of acetic acid in fifty percent glycerol-water solution from 0 to 90. l. Am. Chem. Soc., 68: 966-67.

OCR for page 214
240 BIOGRAPHICAL MEMOIRS 1947 With R. L. Nuttall. The diffusion coefficient of potassium chloride in dilute aqueous solution. l. Am. Chem. Soc., 69: 736 40. Quantitative aspects of diffusion in electrolyte solutions. Chem. Rev., 40: 461-522. 1949 With R. L. Nuttall. Diffusion coefficient of potassium chloride in aqueous solution at 25. Ann. N.Y. Acad. Sci., 51: 781-88. With R. L. Nuttall. The differential diffusion coefficient of potas- sium chloride in aqueous solutions. }. Am. Chem. Soc., 71: 1460 63. With A. L. Levy. The differential diffusion coefficient of calcium chloride in dilute aqueous solutions at 25. }. Am. Chem. Soc., 71: 2781-83. 1950 With C. A. Blake. The diffusion coefficient of potassium chloride in water at 4. }. Am. Chem. Soc., 72: 2265~6. With B. B. Owen. The Physical Chemistry of Electrolytic Solutions, Ed ed. Am. Chem. Soc. Monograph No. 95. N.Y.: Reinhold Publishing. 675 pp. 1951 With C. L. Hildreth, Jr. The differential diffusion coefficient of lithium and sodium chlorides in dilute aqueous solution at 25. I. Am. Chem. Soc., 73: 65~52. With R. M. Hudson. The differential diffusion coefficient of potas- sium nitrate in dilute aqueous solutions at 25. }. Am. Chem. Soc., 73: 652-54. With C. A. Blake. The diffusion coefficients of lithium and sodium sulfates in dilute aqueous solution at 25. }. Am. Chem. Soc., 73: 244~50. With R. M. Hudson. The diffusion coefficient of zinc sulfate in dilute aqueous solution at 25. }. Am. Chem. Soc., 73:3781-83. With C. L. Hildreth. The diffusion coefficient of silver nitrate in dilute aqueous solution at 25. J. Am. Chem. Soc., 73:3292-93.

OCR for page 214
HERBERT SPENCER HARNED 241 With C. A. Blake, Jr. The differential diffusion coefficient of lanth- anum chloride in dilute aqueous solution at 25. i. Am. Chem. Soc., 73:4255-57. Solutions of electrolytes. Annul Rev. Phys. Chem., 2:37-50. With R. M. Hudson. The differential diffusion coefficient of potas- sium ferrocyanide in dilute aqueous solutions at 25. I. Am. Chem. Soc., 73:5083~4. With R. M. Hudson. The diffusion coefficient of magnesium sul- fate in dilute aqueous solution. }. Am. Chem. Soc., 73:5880~82. With C. A. Blake, Jr. The diffusion coefficient of cesium sulfate in dilute aqueous solution at 25. I. Am. Chem. Soc!, 73:5882~3. With L. I. Costing. The application of the Onsager theory of ionic mobilities to self-diffusion. I. Am. Chem. Soc., 73:159-61. 1953 With T. R. Paxton. The thermodynamics of ionized water in stron- tium chloride solutions from electromotive-force measure- ments. I. Phys. Chem., 57:531-35. With M. Blander. The differential diffusion coefficient of ru- bidium chloride in dilute aqueous solution at 25. J. Am. Chem. Soc., 75:2853-55. With F. M. Polestra. The differential diffusion coefficient of stron- tium chloride in dilute aqueous solution at 25. I. Am. Chem. Soc., 75:416~69. Diffusion coefficients of electrolytes in dilute aqueous solutions. Natl. Burl Stand. (U.S.), Circ. No. 524, 67-79. 1954 With D. S. Allen. Standard potentials of silver-silver chloride cells in some ethanol- and isopropyl alcohol-water solutions at 25. I. Phys. Chem., 58:191-92. With F. M. Polestra. Differential diffusion coefficients of magne- sium and barium chlorides in dilute aqueous solutions at 25. I. Am. Chem. Soc., 76:206~65. The diffusion coefficients of the alkali metal chlorides and potas- sium and silver nitrates in dilute aqueous solutions at 25. Proc. Natl. Acad. Sci. USA, 40:551-56. With M. Blander and C. L. Hildreth, fir. The diffusion coefficient of cesium chloride in dilute aqueous solution at 25. I. Am. Chem. Soc., 76:4219-20.

OCR for page 214
242 BIOGRAPHICAL MEMOIRS Relative chemical potentials of electrolytes and the application of their gradients. J. Phys. Chem., 58:683-86. With R. Gary. Activity coefficient of hydrochloric acid in concen- trated aqueous higher-valence type chloride solutions at 25. I. System hydrochloric acid-barium chloride. I. Am. Chem. Soc., 76:592~27. 1955 With H. W. Parker. Diffusion coefficient of calcium chloride in dilute and moderately dilute solutions at 25. I. Am. Chem. Soc., 77:265~6. With H. W. Parker and M. Blander. The diffusion coefficients of lithium and potassium perchlorates in dilute aqueous solutions at 25. I. Am. Chem. Soc., 77:2071-73. With R. Gary. Activity coefficients of hydrochloric acid in concen- trated aqueous higher-valance type chloride solutions at 25. II. System hydrochloric acid-strontium chloride. }. Am. Chem. Soc., 77: 199~95. With R. Gary. Activity coefficients of hydrochloric acid in concen- trated aqueous higher-valance type chloride solutions at 25. III. System hydrochloric acid-aluminum chloride. I. Am. Chem. Soc., 77:4695-97. 1956 With R. G. Bates and E. A. Guggenheim. Standard electrode potential of the silver-silver chloride electrode. I. Chem. Phys., 25:2, 361. 1957 Recent experimental studies of diffusion in liquid systems. Discuss. Faraday Soc., no. 24:7-16. 1958 With A. B. Gancy. The activity coefficient of hydrochloric acid in potassium chloride solutions. I. Phys. Chem., 62:627-29. With J. A. Shropshire. The diffusion and activity coefficients of sodium nitrate in dilute aqueous solutions at 25. I. Am. Chem. Soc., 80:261~19.

OCR for page 214
HERBERT SPENCER HARNED 243 With I. A. Shropshire. The activity coefficients of alkali metal ni- trates and perchlorates in dilute aqueous solutions at 25 from diffusion coefficients. I. Am. Chem. Soc., 80:2967-68. With I. A. Shropshire. The diffusion coefficient at 25 of potassium chloride at low concentrations in 0.25 molar aqueous sucrose solutions. I. Am. Chem. Soc., 80:5652-53. With B. B. Owen. The Physical Chemistry of Electrolytic Solutions, ad ed. Am. Chem. Soc. Monograph No.95. N.Y.: Reinhold Publishing. 803 pp. 1959 The thermodynamic properties of the system hydrochloric acid, sodium chloride and water from 0 to 50. I. Phys. Chem., 63: 1299-302. With R. Gary. The activity coefficient of hydrochloric acid in cad- mium chloride solutions at 5 M total ionic strength. I. Phys. Chem., 63:2086. With A. B. Gancy. The activity coefficient of hydrochloric acid in thorium chloride solutions at 25. I. Phys. Chem., 63:2079~0. With M. Blander. Glass conductance cell for the measurement of diffusion-coefficients. I. Phys. Chem., 63:207~79. Concentration dependence of the four diffusion coefficients of the system NaCl-KCl-H2O at 25. In: Structure of Electrolytic Solutions, ed. W. J. Hamer, pp. 152-59. N.Y.: John Wiley. 1960 The thermodynamic properties of the system: hydrochloric acid, potassium chloride and water from 0 to 40. I. Phys. Chem., 64: 112-14. With J. A. Shropshire. Diffusion coefficient at 25 of potassium chloride at low concentrations in 0.75 molar aqueous sucrose solution. I. Am. Chem. Soc., 82:799~00. With L. Pauling and R. B. Corey. Preparation of (Nb6Cl~2)Cl2. 7H2O. I. Am. Chem. Soc., 82:4815-18. 1961 The activity coefficient of hydrochloric acid in organic solvent- water mixtures. U.S. At. Energy Comm. TlD-12097. 12 pp.

OCR for page 214
244 BIOGRAPHICAL MEMOIRS Osmotic coefficients of hydrochloric acid, potassium and sodium chlorides from 0 to 40 or 50. U.S. At. Energy Comm. TlD-12096. 7 pp. 1962 A rule for the calculation of the activity coefficients of salts in organic solvent-water mixtures. I. Phys. Chem., 66:589~91. 1963 Thermodynamic properties of the system: hydrochloric acid, lith- ium chloride, and water from 15 to 35. I. Phys. Chem., 67~8~: 1739. 1968 With R. A. Robinson. Topic 15: equilibrium properties of electro- lyte solutions. In: The International Encyclopedia of Physical Chem- istry and Chemical Physics, vol. 2, Multicomponent Electrolyte Solu- tions. N.Y.: Pergamon. 110 pp.

OCR for page 214