that are commercial products and tools that have little market value but are important tools for discovery. In the case of PCR, the research tool is both a commercial product and a discovery tool. As such, it raises questions. Are the PCR patents an example of valuable property that would have been widely disseminated in the absence of patent rights? Is PCR an example of a technology that has been more fully developed because of the existence of patent rights? Daniell stated that Roche has added considerable value to the technology, in part through the mechanism of patent rights. There was vigorous discussion and disagreement as to whether the licensing fees justify the value added by Roche.

PROTEIN AND DNA SEQUENCING INSTRUMENTS: Research Tools to Which Strong Patent Protection Promoted Broad Access

This case study was selected because it provides a clear example of how patent protection promoted the development and dissemination of research tools. By most standards, this would be considered a successful transfer of technology. The possibility of automated, highly sensitive DNA and protein sequencers was developed in the public sector by Leroy Hood's group at California Institute of Technology (Cal Tech). However, it was only with the help of substantial private investment that these research tools were widely disseminated.

The ability to synthesize and sequence proteins and DNA revolutionized molecular biology; automating these tasks promised to consolidate the revolution. Indeed much of the achievement of the Human Genome Project is attributable to the development of automated sequencing instruments, which greatly reduced the time and cost needed to sequence DNA. Because the effects of genes depend on the proteins that they encode, protein sequencing has been a key step in deciphering gene function. Until automated sequencing instruments were widely available, only a few laboratories had access to this technology.

The prototypes for these instruments were developed in Hood's laboratory during the years 1970–1986. Over a period of six or seven years, the team of scientists assembled by Hood increased the sensitivity of protein sequencing instruments by a factor of about 100. That transformed a difficult and uncertain task into one that could be reliably accomplished with the minute quantities of purified proteins that so often limited the scope of the analysis. Hood's laboratory was the first to sequence lymphokines, platelet-derived growth factor, and interferons. After those successes, he was approached by many scientists who asked why the technology could not be made available to the whole research community. Since the middle 1990s, the technology has become widely available.

The broad availability of sequencing technology is due, in no small part, to Hood's perseverance in the face of widespread skepticism. His 1980 manuscript

The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement