sions of the US Patent and Trademark Office (PTO) are controversial and under close scrutiny by those charged with managing intellectual property.

In commenting that "it is hard to know what the proprietary landscape is going to be, but it will be complex, whatever it is," Wilson summarized many of the workshop participants' comments.

Changes in Biotechnology Strategies

Respess discussed how R & D strategies for biotechnology have changed over the last twenty years. The biotechnology industry was born in about 1975 by Genentech, and most of the companies that followed Genentech pursued a similar strategy. Their objective was to produce and sell therapeutically-active large protein molecules, which was made possible by the availability of the Cohen-Boyer technology. The strategy was to discover and try to patent a gene for such a protein; it was hoped that the gene could be used to express abundant quantities of the protein. Some of the early examples are insulin, growth hormone, erythropoietin, and the interferons.

The advantages of that approach were that everyone knew that the products would be useful and that recombinant techniques were efficient for production, compared with earlier techniques of extraction from cadavers and tissue. Another advantage—albeit not from a scientific viewpoint—is that it is easy to sell to the investment community; it was a simple, easily understood model. Respess described the raising of capital in the early days of biotechnology as "unbelievable. You could found a company and, within a relatively short time, go public and raise many millions of dollars." However, those days are now past, in part because of the intrinsic limitation of large protein molecules: they are expensive to produce and to deliver to patients (they must be delivered by injection). The drug targets that are easy to identify have already been exploited.

A newer biopharmaceutical strategy emerged—not to discover large proteins or other large-molecule drugs, but to find other therapeutically active small molecules. These are the traditional targets of pharmaceutical research, but a biopharmaceutical company uses modern biotechnology and insights from molecular biology to get to the ultimate target product more quickly and efficiently. This approach has several advantages. The drugs are conventional and can typically be given orally, as well as by injection; they are relatively easy to manufacture; and the Food and Drug Administration is very familiar with such drugs, which makes it easier to get a new drug approved. The problem from a small company's perspective, however, is that it takes a very expensive infrastructure. Ultimately, synthesizing small molecules means making many molecules, and medicinal chemistry is very expensive. You have a tool, but you do not have any products in hand.

The National Academies of Sciences, Engineering, and Medicine
500 Fifth St. N.W. | Washington, D.C. 20001

Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement