and riparian ecosystems—that is, to achieve more ''normative" ecological conditions. Normative conditions occur where more natural discharge regimes predominate and where aquatic and riparian habitats are present in sufficient quantity, quality, and diversity to sustain food webs dominated by native species (Graf, 1996; Stanford, 1997; Stanford et al., 1996). Normative does not imply pristine conditions. Rather, the goal is to normalize key ecosystem attributes and processes to the extent that goals relating to water quality and quantity, fish production, biodiversity, and other watershed goods and services are met and sustained.

Successful watershed management strives for a better balance between ecosystem and watershed integrity and provision of human social and economic goals. Stanford (1997) discussed several general objectives that can be managed within a watershed context which can help the nation achieve more normative watershed conditions:

Reduce pollution sources by developing watershed water quality standards, such as using the concept of total maximum daily loads to control nonpoint source pollutants. Federal, state, and local laws provide water quality standards that safeguard drinking water, but they do not necessarily protect ecosystems or watershed integrity. One example is the drinking water standards for nitrate and nitrogen, which were designed to prevent methemoglobinemia in infants (blue baby syndrome), but which in many cases allow dissolved nitrogen levels high enough to cause excessive algae growths in streams and lakes.

Protect and enhance riparian zones with ecologically sound management practices such as buffer zones. The vegetation that grows along the edges of waterways, especially wetland vegetation and floodplain vegetation, provides critically important borders that buffer lakes and streams against upland pollution and streambank erosion. These riparian zones provide ecological functions, support native plants and animals, and can increase property values. Yet there are tremendous differences among the riparian protection requirements for different types of land use (NRC, 1996). Forested headwaters often receive far greater protection than urban or agricultural floodplain areas. Controls and incentives for riparian conservation practices are needed to prevent overgrazing, excessive logging, road building, invasions of exotic plants, and encroachment of urban and industrial development in important buffer areas.

Recognize in law and regulations that ground and surface waters interact . Connections between ground and surface waters are poorly appreciated, especially in legal frameworks. Yet many aquifers are constantly exchanging water with streams and rivers. In floodplains and riparian zones, ground water that upwells from alluvial aquifers can produce a diverse array of habitat types.

Recognize in land management activities that rivers need room to roam, and their floodplains are inherently subject to flooding. Floodplains act as storage sites for floodwaters, and the ability of floodplains to store and moderate high flows is strongly influenced by the width of the floodplain, the development of an

The National Academies of Sciences, Engineering, and Medicine
500 Fifth St. N.W. | Washington, D.C. 20001

Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement