BOX 1-7 Tampa Water Resource Recovery Project

The Tampa Water Resource Recovery Project was developed to satisfy the future water demands of both the city of Tampa and the West Coast Regional Water Supply Authority. The proposed project involves the supplemental treatment of the Hookers Point Advanced Wastewater Treatment (AWT) Facility effluent to achieve acceptable quality for augmentation of the Hillsborough River raw water supply. A pilot plant was designed, constructed, and operated to evaluate supplemental treatment requirements, performance, reliability, and quality (CH2M Hill, 1993).

Source water for the pilot plant was withdrawn downstream from AWT Facility denitrification filters prior to chlorination. The pilot plant facility evaluated four unit process trains, all of which included preaeration lime treatment and recarbonation, and gravity filtration, followed by either (1) ozone disinfection, (2) reverse osmosis and ozone disinfection, (3) ultrafiltration and ozone disinfection, or (4) granular activated carbon (GAC) adsorption and ozone disinfection. The process train including GAC adsorption and ozone disinfection was selected for design.

The City of Tampa's industrial base is mostly food oriented. Inputs to the wastewater system were confirmed by a ''vulnerability analysis." Tampa has an active pretreatment program, and there has been no interference with the plant's biological process since startup in 1978.

The design of the advanced treatment plant allows for rejection of water at any level of treatment and diversion back to the main plant. The use of a bypass canal for storage and mixing provides a large storage capacity and constant dilution of product water with canal and river water. Water can be diluted from the aquifer when river water is not available. Flood control gates allow canal to be flushed if a problem is detected. Canal water can be drawn through a "linear well field" along the canal to provide further ground water dilution. Five miles of canal and river provide additional natural treatment prior to the intake for the drinking water treatment plant.

forced many municipal wastewater utilities to upgrade their treatment processes to decrease the level of nutrients in the effluent. This is causing many communities to consider reuse alternatives for municipal wastewater. For example, the City of Tampa has completed a feasibility study (CH2M Hill, 1993) and intends to implement a program to augment its river water supply with reclaimed water (see Box 1-7).

Since 1978, the Upper Occoquan Sewage Authority (UOSA), in northern Virginia, has discharged reclaimed wastewater to the upper reaches of the Occoquan Reservoir, which serves as the principal water supply source for approximately one million people. The UOSA reclamation plant was developed in 1978 in response to deteriorating water quality conditions in the reservoir, which occurred as a result of discharges into



The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement