fields and drainage aquaculture ponds. In addition, prior to reaching the nature reserve, half of the flow is diverted to feed fish ponds. As a result, the river is stressed by pollutants and increasing salinity, especially toward the end of summer.

The high concentration of pollutants and the low and slow flow promotes the spread of duckweed—a distinct signal of severe ecosystem change, and many aquatic species typical to this river have already disappeared. Yet, the Taninim River, with protected areas along its course, is the only perennially flowing coastal river in Israel because the natural low salinity of the Timsah springs, 1,200 mg Cl/l, is suitable for aquaculture but not for agriculture. However, the economic feasibility of desalinating this relatively low salinity water makes the 25 million m3/y discharge of Timsah springs attractive for closing the water supply "gap" of exactly the same amount, forecasted for the city of Haifa by year 2000. If this project of impounding, desalinating, and transporting all the Timsah discharge is to be implemented, it is estimated that the Taninim River's current flow of 50 million m3/yr will be reduced to 18 million m3/yr of highly polluted water. This project will obstruct the outlet of the river to the sea, such that estuarine biodiversity will disappear (Ben-David, 1987). Thus, the Taninim River may become a case in which implementing desalination technology for domestic water supplies will kill the only functioning coastal river ecosystem west of the Jordan River.

The Jordan River Basin

The basin elevation ranges from 90 m above sea level to 400 m below sea level and includes three source streams, which create the northern section of the Jordan River. Most important of these three headwaters is River Dan, the only Israeli river that has a seasonally stable output. It has also a stable temperature, a year-round high oxygen saturation and a high number of species (156 aquatic animal species). The three streams cross the Hula Project region as a canal, then descend in the Jordan River's natural course to Lake Kinneret.1 The Kinneret drains to the lower Jordan River, which discharges to the Dead Sea, which is a dead-end lake.

The major water management activities in the basin are the drainage of the Hula wetland and its subsequent management (See Box 4.2), and the management of Lake Kinneret, which is the major surface water storage of the State of Israel. The Hula project affected and is still affecting Lake Kinneret's water quality, the management of Lake Kinneret affects


Lake Kinneret is also named the Sea of Galilee and Lake Tiberias.

The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement