Cover Image

PAPERBACK
$51.75



View/Hide Left Panel

it will provide strong evidence that in this instance, cortical plasticity is mediated through a “top-down” approach. There are no examples in the literature, to my knowledge, that visual stimuli effect the response of auditory cortical neurons, although such inputs may exist via projections from the anterior thalamus or Pulvinar. This class of studies therefore could represent a powerful animal model of cortico-cortical interactions and provide insights into how the activity of the cerebral cortex gives rise to perception.

Summary

These data, taken together, suggest that normal adult human subjects are able to alter their cortical representations over a relatively brief time course and effectively alter their perception of at least acoustic space. The transference data suggest that the neuronal representation of acoustic space is frequency-specific. This further suggests that either the frequency-selective regions of auditory cortex, such as AI, are contributing to the effect, or that higher-order cortical areas, such as the secondary auditory cortical area CM and the parietal lobe, are adjusting the inputs from AI to better coincide with the visual spatial information. It remains to be seen whether the representation of space is modifiable in primary auditory cortex of the primate, similar to the modifiability of the representation of frequency (6).

I thank M.Phan, D.Guard, and M.Sutter for their contributions to this report. This work was funded by National Institutes of Health Grant DC02371–02, the Sloan Foundation, and the Klingenstein Foundation.

1. Kaas, J.H. (1991) Annu. Rev. Neurosci. 14, 137–167.

2. Merzenich, M.M., Kaas, J.H., Wall, J.T., Nelson, R.H. & Felleman, D.H. (1983) Neuroscience 10, 639–665.

3. Nudo, R.J., Wise, B.M., SiFuentes, F. & Milliken, G.W. (1996) Science 272, 1791–1794.

4. Pons, T.P., Garraghty, P.E. & Mishkin, M. (1988) Proc. Natl. Acad. Sci. USA 85, 5279–5281.

5. Ramachandran, V.S., Rogers-Ramachandran, D. & Stewart, M. (1992) Science 258, 1159–1160.

6. Recanzone, G.H., Schreiner, C.E. & Merzenich, M.M. (1993) J. Neurosci. 13, 87–103.

7. Recanzone, G.H., Merzenich, M.M., Jenkins, W.M., Grajski, K.A. & Dinse, H.A. (1992a) J. Neurophysiol. 67, 1031–1056.

8. Recanzone, G.H., Merzenich, M.M. & Jenkins, W.M. (1992) J. Neurophysiol. 67, 1057–1070.

9. Recanzone, G.H., Merzenich, M.M. & Schreiner, C.E. (1992) J. Neurophysiol. 67, 1071–1091.

10. Nudo, R.J., Milliken, G.W., Jenkins, W.M. & Merzenich, M.M. (1996) J. Neurosci. 16, 785–807.

11. Karni, A., Meyer, G., Jezzard, P., Adams, M.M., Turner, R. & Ungerleider, L.G. (1995) Nature (London) 377, 155–158.

12. Nudo, R.J., Jenkins, W.M. & Merzenich, M.M. (1990) Somatosens. Motor Res, 7, 463–483.

13. Recanzone, G.H., Merzenich, M.M. & Dinse, H.R. (1992) Cerebral Cortex 2, 181–196.

14. Dinse, H.R., Recanzone, G.H. & Merzenich, M.M. (1993) Neuroreport 18, 173–176.

15. Bakin, J.S. & Weinberger, N.M. (1990) Brain Res. 536, 271–286.

16. Weinberger, N.M. (1995) Annu. Rev. Neurosci. 18, 129–158.

17. Pettet, M.W. & Gilbert, C.D. (1992) Proc. Natl. Acad. Sci. USA 89, 8366–8370.

18. Canon, L.K. (1970) J. Exp. Psychol. 84, 141–147.

19. Kelso, J.A.S., Cook, E., Olson, M.E. & Epstein, W. (1975) J. Exp. Psychol. Human Percept. Perf. 1, 237–245.

20. Howard, I.P. & Templeton, W.B. (1966) Human Spatial Orientation. (Wiley, New York), p. 361.

21. Pick, H.L., Warren, D.H. & Hay, J.C. (1969) Percept. Psychophys. 6, 203–205.

22. Goldberg, M.E. & Wurtz, R.H. (1972) J. Neurophysiol. 35, 542–559.

23. Middlebrooks, J.C. & Knudsen, E.I. (1984) J. Neurosci. 4, 2621–2634.

24. Jay, M.F. & Sparks, D.L. (1984) Nature (London) 309, 345–347.

25. Sparks, D.L. & Nelson, J.S. (1987) Trends Neurosci. 10, 312–317.

26. Wallace, M.T. & Stein, B.E. (1996) Prog. Brain Res. 112, 301–311.

27. Sanchez-Longo, L.P. & Forster, F.M. (1958) Neurology 8, 119–125.

28. Neff, W.D., Fisher, J.F., Diamond, I.T. & Yela, M. (1956) J. Neurophysiol. 19, 500–512.

29. Kavanagh, G.L. & Kelly, J.B. (1987) J. Neurophysiol. 57, 1746–1766.

30. Jenkins, W.M. & Merzenich, M.M. (1984) J. Neurophysiol. 52, 819–847.

31. Heffner, H.E. & Heffner, R.S. (1990) J. Neurophysiol. 64, 915–931.

32. Motter, B.C. & Mountcastle, V.B. (1981) J. Neurosci. 1, 3–26.

33. Mazzoni, P. Bracewell, R.M., Barash, S. & Andersen, R.A. (1996) J. Neurophysiol. 75, 1233–1241.

34. Recanzone, G.H., Makhamra, S.D.D.R. & Guard, D.C. (1997) J. Acoust. Soc. Amer., in press.

35. Middlebrooks, J.C., Clock, A.E., Xu, L. & Green, D.M. (1994) Science 264, 842–844.

36. Imig, T.J., Irons, W.A. & Samson, F.R. (1990) J. Neurophysiol. 63, 1448–1466.

37. Rajan, R., Aitkin, L.M. & Irvine, D.R.F. (1990) J. Neurophysiol. 64, 888–902.

38. Middlebrooks, J.C. & Pettigrew, J.D. (1981) J. Neurosci. 1, 107–120.

39. Benson, D.A., Hienz, R.D. & Goldstein, M.H., Jr. (1981) Brain Res. 219, 249–267.

40. Eisenman, L.M. (1974) Brain Res. 75, 203–214.

41. Rauschecker, J.P., Tian, B., Pons, T. & Mishkin, M. (1997) J. Comp. Neurol. 382, 89–103.

42. Morel, A., Garraghty, P.E. & Kaas, J.H. (1993) J. Comp. Neurol. 335, 437–459.

43. Merzenich, M.M. & Brugge, J.F. (1973) Brain Res. 50, 275–296.

44. Maunsell, J.H. & Gibson, J.R. (1992) J. Neurophysiol. 68, 1332–1344.

45. Soroker, N., Calamaro, N. & Myslobodsky, M.S. (1995) J. Clin. Exp. Neuropsychol. 17, 243–255.

46. Driver, J. (1996) Nature (London) 381, 66–68.

47. McGurk, H. & MacDonald, J. (1976) Nature (London) 263, 747–748.



The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement