Cover Image

PAPERBACK
$51.75



View/Hide Left Panel

subject is engaging differentially a single, identified cognitive process. It should be noted that “a more sensitive behavioral test” cannot solve this problem because it is always possible that the subject engages unnecessary cognitive processes that either have no overt, measurable effects or are perfectly confounded with the process of interest. As a result, observed neural activity may be the result of some confounding neural computation that is not itself necessary for the execution of the cognitive process ostensibly under study. An equivalent formulation of these statements is to note that, essentially, neuroimaging is an observational, correlative method (72).

When combined, however, a stronger level of inference results from lesion and neuroimaging studies. One type of combination might be that (i) lesions to a cortical area impair a given cognitive process and that (ii) the cognitive process, when engaged by intact subjects, evokes neural activity in the same cortical area. The inference that the neuroanatomical area is computationally necessary for the cognitive process is now rendered less vulnerable to the faults detailed above for each method in isolation although it is still possible to conceive of failures. As a result, neuroimaging and lesion studies are complementary, in that each provides inferential support that the other lacks.

This work was supported by grants from the National Institute of Health (NS01762 and AG13483) and the McDonnell-Pew Program in Cognitive Neuroscience.

1. O’Keefe, J. & Nadel, L. (1978) The Hippocampus as a Cognitive Map (Oxford Univ. Press, Oxford).

2. Brewer, B. & Pears, J. (1993) in Spatial Representation, eds. Eilan, N., McCarthy, R. & Brewer, B. (Blackwell, Oxford), pp. 25–30.

3. Heft, H. (1979) Environ. Psychol. Nonverbal Behav. 3, 172–185.

4. Thorndyke, P.W. & Hayes, R.B. (1982) Cognit. Psychol. 14, 560–589.

5. Magliano, J.P., Cohen, R., Allen, G.L. & Rodrigue, J.R. (1995) J. Environ. Psychol. 15, 65–75.

6. O’Keefe, J. & Dostrovsky, J. (1971) Brain Res. 34, 171–175.

7. Morris, R.G., Garrud, P., Rawlins, J.N. & O’Keefe, J. (1982) Nature (London) 297, 681–683.

8. Habib, M. & Sirigu, A. (1987) Cortex 23, 73–85.

9. Maguire, E.A., Burke, T., Phillips, J. & Staunton, H. (1996) Neuropsychologia 34, 993–1001.

10. Bohbot, V., Kalina, M., Stepankova, K., Spackova, N., Petrides, M. & Nadel, L. Neuropsychologia, in press.

11. Aguirre, G.K., Detre, J.A., Alsop, D.C. & D’Esposito, M. (1996) Cereb. Cortex 6, 823–829.

12. Maguire, E.A., Frackowiak, R.S.J. & Frith, C.D. (1996) Proc. R. Soc. London 263, 1745–1750.

13. Maguire, E.A., Burgess, N., Donnett, J.G., O’Keefe, J. & Frith, C.D. (1998) J. Cognit. Neurosci., in press.

14. Siegel, A.W. & White, S.H. (1975) in Advances in Child Development and Behavior, eds. Reese, H.W. (Academic, New York), pp. 9–55.

15. Thorndyke, P. (1981) in Cognition, Social Behavior, and the Environment, ed. Harvey, J. (Erlbaum, Hillsdale, NJ).

16. Aguirre, G.K. & D’Esposito, M. (1997) J. Neurosci. 17, 2512– 2518.

17. Farah, M.J. (1990) Visual Agnosia (MIT Press, Cambridge, MA).

18. Desimone, R. (1991) J. Cognit. Neurosci. 3, 1–8.

19. Kanwisher, N., McDermott, J. & Chun, M.M. (1997) J. Neurosci. 17, 4302–4311.

20. Cohen, N.J. & Eichenbaum, H. (1993) Memory, Amnesia and the Hippocampal System (MIT Press, Cambridge, MA).

21. Jarrard, L.E. (1993) Behav. Neural Biol. 60, 9–26.

22. Morris, R.G.M., Schenk, F., Tweedie, F. & Jarred, L. (1990) Eur. J. Neurosci. 2, 1016–1028.

23. Smith, M.L. & Milner, B. (1981) Neuropsychologia 19, 781–793.

24. Cave, C.B. & Squire, L.R. (1991) Hippocampus 1, 329–340.

25. DeRenzi, E. (1982) Disorders of Space Exploration and Cognition (Wiley, New York).

26. Zola-Morgan, S., Squire, L.R. & Amaral, D.G. (1986) J. Neurosci. 6, 2950–2967.

27. Rempel-Clower, N.L., Zola, S.M., Squire, L.R. & Amaral, D.G. (1996) J. Neurosci. 16, 5233–5255.

28. Scoville, W.B. & Milner, B. (1957) J. Neurol. Neurosurg. Psychiatry 20, 11–21.

29. Milner, B., Corkin, S. & Teuber, H.-L. (1968) Neuropsychologia 6, 215–234.

30. Squire, L.R. & Zola, S.M. (1996) Proc. Natl. Acad. Sci. USA 93, 13515–13522.

31. Pick, H.L. (1993) in Spatial Representation, eds. Eilan, N., McCarthy, R. & Brewer, B. (Blackwell, Oxford), pp. 31–42.

32. Regian, J.W. & Shebilske, W.L. (1992) J. Communication 42, 136–149.

33. Friston, K.J., Price, C.J., Fletcher, P., Moore, C., Frackowiak, R.S.J. & Dolan, R.J. (1996) NeuroImage 4, 97–104.

34. Suzuki, W.A. & Amaral, D.G. (1994) J. Comp. Neurol. 350, 497–533.

35. McNaughton, B.L., Leonard, B. & Chen, L. (1989) Psychobiology 17, 230–235.

36. Owen, A.M., Milner, B., Petrides, M. & Evans, A.C. (1996) J. Cognit. Neurosci. 8, 588–602.

37. Zola-Morgan, S., Squire, L.R., Amaral, D.G. & Suzuki, W.A. (1989) J. Neurosci. 9, 4355–4370.

38. Suzuki, W.A., Zola, M.S., Squire, L.R. & Amaral, D.G. (1993) J. Neurosci. 13, 2430–2451.

39. Anderson, R.A., Snyder, L.H., Li, C.-S. & Stricanne, B. (1993) Curr. Opin. Neurobiol. 3, 171–176.

40. Whiteley, A.M. & Warrington, E.K. (1978) J. Neurol. Neurosurg. Psychiatry 41, 575–578.

41. Levine, D., Warach, J. & Farah, M. (1985) Neurology 35, 1010– 1018.

42. Hanley, J.R. & Davies, A.D. (1995) in Broken Memories, eds. Campbell, R. & Conway, M.A. (Blackwell, Oxford), pp. 195–208.

43. Mishkin, M., Ungerleider, L.G. & Macko, K.A. (1983) Trends Neurosci. 6, 414–417.

44. Ungerleider, L.G. & Haxby, J.V. (1994) Curr. Opin. Neurobiol. 4, 157–165.

45. Moscovitch, C., Kapur, S., Kohler, S. & Houle, S. (1995) Proc. Natl. Acad. Sci. USA 92, 3721–3725.

46. McCarthy, R. (1993) in Spatial Representation, eds. Eilan, N., McCarthy, R. & Brewer, B. (Blackwell, Oxford), pp. 373–399.

47. Farrell, M.J. (1996) Neurocase 2, 509–520.

48. Hécaen, H., Tzortzis, C. & Rondot, P. (1980) Cortex 16, 525–542.

49. Rocchetta, A.I., Cipolotti, L. & Warrington, E.K. (1996) Cortex 32, 727–735.

50. Landis, T., Cummings, J.L., Benson, D.F. & Palmer, E.P. (1986) Arch. Neurol. 43, 132–136.

51. Takahashi, N., Kawamura, M., Hirayama, K. & Tagawa, K. (1989) No to Shinkei Brain Nerve 41, 703–710.

52. McCarthy, R.A., Evans, J.J. & Hodges, J.R. (1996) J. Neurol. Neurosurg. Psychiatry 60, 318–325.

53. Pallis, C.A. (1955) J. Neurol. Neurosurg. Psychiatry 18, 218–224.

54. Tohgi, H., Watanabe, K., Takahashi, H., Yonezawa, H., Hatano, K. & Sasaki, T. (1994) J. Neurol. 241, 470–474.

55. Holmes, G. & Horrax, G. (1919) Arch. Neurol. Psychiatr. 1, 385–407.

56. Kase, C.S., Troncoso, J.F., Court, J.E., Tapia, J.F. & Mohr, J.P. (1977) J. Neurol. Sci. 34, 267–278.

57. Stark, M., Coslett, B. & Saffran, E.M. (1996) Cognit. Neuropsychol. 13, 481–523.

58. McNaughton, B.L., Mizumori, S.J. & Barnes, C. (1994) Cereb. Cortex 4, 27–39.

59. Cammalleri, R., Gangitano, M., D’Amelio, M., Raieli, V., Raimondo, D. & Camarda, R. (1996) Neuropsychologia 34, 321–326.

60. Takahashi, N., Kawamura, M., Shiota, J., Kasahata, N. & Hirayama, K. (1997) Neurology 49, 464–469.

61. Chen, L.L., Lin, L.H., Green, E.J., Barnes, C.A. & McNaughton, B.L. (1994) Exp. Brain Res. 101, 8–23.

62. Taube, J.S., Goodridge, J.P., Golob, E.J., Dudchenko, P.A. & Stackman, R.W. (1996) Brain Res. Bull. 40, 477–486.

63. Allison, T., Ginter, H., McCarthy, G., Nobre, A.C., Puce, A., Luby, M. & Spencer, D.D. (1994) J. Neurophysiol. 71, 821–825.

64. Haxby, J.V., Horwitz, B., Ungerleider, L.G., Maisog, J.M., Pietrini, P. & Grady, C.L. (1994) J. Neurosci. 14, 6336–6353.

65. Worsley, K.J. & Friston, K.J. (1995) NeuroImage 2, 173–182.



The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement