National Academies Press: OpenBook
« Previous: Appendix A. Study Activities
Suggested Citation:"Appendix B. Copy of the Memorandum from Dr. Charles Land to Dr. Richard Klausner." Institute of Medicine and National Research Council. 1999. Exposure of the American People to Iodine-131 from Nevada Nuclear-Bomb Tests: Review of the National Cancer Institute Report and Public Health Implications. Washington, DC: The National Academies Press. doi: 10.17226/6283.
×

Appendix B
Copy of the Memorandum from Dr. Charles Land to Dr. Richard Klausner

DATE:

September 23, 1997

TO:

Dr. Richard Klausner, Director, NCI

FROM:

Charles Land, Ph.D., Health Statistician, DCEG/EBP/REB

THROUGH:

Director, DCEG

SUBJECT:

Calculation of lifetime thyroid cancer risk for an average thyroid dose of 0.02 Gy from I-131 in fallout

My calculations of the thyroid cancer risk that might be associated with exposure to the American public to 131I fallout from the Nevada Test Site resulted in an estimated range of 7,500 to 75,000 excess thyroid cancers during the lifetime of those exposed before 20 years of age. This range of estimates may be compared with about 400,000 expected, according to current SEER rates, among this segment of the US population. Thus, the estimated excess is between 2% and 19% of what might be expected in the absence of exposure. The calculations were based on a published, pooled analysis of thyroid cancer risk data from 5 cohort studies of populations exposed during childhood to medical x ray, or to gamma ray from the atomic bombings of Hiroshima and Nagasaki (Ron et al., 1995). They also incorporate various assumptions about the relative biological effectiveness (RBE) of 131I compared to x ray or gamma ray. Significant excess risk was assumed to occur only following exposure before 20 years of age, in accordance with the epidemiological literature. A linear does response was assumed, and the dose-specific excess relative risk, which was assumed to decrease sharply with increasing age at exposure, was also assumed to remain constant over the lifetime of the exposed population.

Suggested Citation:"Appendix B. Copy of the Memorandum from Dr. Charles Land to Dr. Richard Klausner." Institute of Medicine and National Research Council. 1999. Exposure of the American People to Iodine-131 from Nevada Nuclear-Bomb Tests: Review of the National Cancer Institute Report and Public Health Implications. Washington, DC: The National Academies Press. doi: 10.17226/6283.
×

The calculations (see attached Excel spreadsheet)

Column 1 identifies the exposure ages considered. The first year of life was treated separately and older ages were grouped: 1-4, 5-9, 10-14, and 15-19. Exposure at ages older than 20 was ignored because there is little or no evidence of an excess cancer risk associated with exposure in adult life even to gamma and x-ray irradiation. Columns 2 and 3 give the estimated number of persons in the 1952 population of the US, by age and sex, as interpolated from 1950 and 1960 census numbers. The total number exposed at ages 0-19 also includes persons born in 1953, 1954, etc., but the entry into the population of newborn persons is largely compensated by the loss of persons reaching age 20 in the same years. With a linear dose-response model and lifetime excess risk, error introduced by acting as if the population 0-19 years of age in 1952 received all the dose that was actually received by those who were 0-19 years old during any part of the above-ground testing period is relatively unimportant.

Column 4 gives age-specific average thyroid doses in rad corresponding to the assumed average dose of 2 rad (0.02 Gy), based on information provided by André Bouville (this is why the first year of life was separated from the next four). As you know, thyroid doses to children are larger than those for adults because of smaller gland size, higher milk intake, and higher metabolism.

Column 5 gives the age-specific, linear dose-response coefficients for x ray and gamma ray, derived from Ron et al. (1995). Their overall coefficient for excess relative risk (ERR) at 1 rad was 0.077. They also did analyses suggesting that the ERR decreases by a factor of 2 for each successive 5-year interval of age at exposure, over the range 0-14 years of age. I derived the values in column 5 from the Ron et al. analysis, and extended the 2-fold reduction rule to 15-19 years at exposure. In each subsection, the age-specific coefficients have been multiplied by the specified RBE value.

Columns 6 and 7 are the estimated lifetime excess thyroid cancer rates for males and females, computed by multiplying the product of columns 4 and 5 by 0.25% for males and 0.64% for females, respectively; these percentages are the SEER (1973-1992) report's estimated lifetime thyroid cancer rates for men and women. The 1973-1994 SEER volume is now out, and gives 0.27% for males and 0.66% for females. Use of the new values would increase the total by about 4%.

Columns 8 and 9 were obtained by multiplying columns 2 and 3 by columns 6 and 7, respectively, and column 10 is the sum of columns 8 and 9. One implication of column 10 is that 75% of all the excess risk is estimated to result from exposure during the first 5 years of life.

The calculations are repeated for RBE values of 1.0, 0.66, 0.3, and 0.1.

Suggested Citation:"Appendix B. Copy of the Memorandum from Dr. Charles Land to Dr. Richard Klausner." Institute of Medicine and National Research Council. 1999. Exposure of the American People to Iodine-131 from Nevada Nuclear-Bomb Tests: Review of the National Cancer Institute Report and Public Health Implications. Washington, DC: The National Academies Press. doi: 10.17226/6283.
×

Sources of uncertainty

NCRP report No. 80, ''Induction of Thyroid Cancer by Ionizing Radiation," 1985, gave a range of 0.1 to 1.0 for the RBE of thyroid dose from ingested or inhaled I-131 compared to gamma ray or x ray, based on experimental studies. The report recommended 0.3 for radiation protection purposes, as the highest credible value. The NCRP report also stated that the RBE of 131I relative to x ray may be lower at high doses and dose rates, and higher (nearer to x ray in effectiveness) at low dose and dose rates. Thus, Walinder (1972, summarized in the NCRP report) obtained an RBE of 0.1 using 131I thyroid doses in the range 2200-11,000 rad whereas Lee et al. (1982) found near equivalence using dose groups at 80, 330 and 850 rad. Laird (1987) conducted parallel and combined analyses of 6 cohorts of children exposed to external radiation and one exposed to 131I, and reevaluated experimental data from the large study of Lee et al. (1982) specifically designed to investigate the RBE of 131I. Her RBE estimate was 0.66 with 95% confidence limits 0.14-3.15 (however, there is no support that I know of for an RBE greater than 1). The RBE value at low doses remains a contentious issue.

The range of estimates does not take into account statistical uncertainty about the Ron coefficients or statistical and subjective uncertainty about the estimated average dose. The Ron estimate of ERR1Gy = 7.7 had 95% confidence limits 2.1-28.7, corresponding to a geometric standard deviation (GSD) of about 1.95. The average dose estimated by NCI, 2 rad, was assigned a GSD of 3, and therefore the product of that dose and the estimated ERR at 1 rad has a GSD of 3.6 (calculated as the exponential of the square root of the sum of squares of the natural logarithms of 1.95 and 3). Approximate 95% confidence limits for the number of excess cases are obtained by dividing and multiplying by 12.4 (= 3.61.96). Thus, for example, ignoring all other possible sources of error, an estimate of 49,000 lifetime excess cases (corresponding to RBE = 0.66) would have confidence limits 4,000-608,000.

According to the model used for the estimates, ERR is constant over time following exposure, and about one third of the total excess lifetime risk among men in the exposed population, and about half among women, should already have taken place. It is possible, however, that the actual excess relative risk per unit dose may decline over time following exposure, most of which occurred over 40 years ago. Ron et al. found significant variation by time following exposure, but did not find a statistically significant trend. At the present time there are few data on radiation-related thyroid cancer risk 40 or more years following exposure during childhood, and therefore little basis for a discussion of the question.

Suggested Citation:"Appendix B. Copy of the Memorandum from Dr. Charles Land to Dr. Richard Klausner." Institute of Medicine and National Research Council. 1999. Exposure of the American People to Iodine-131 from Nevada Nuclear-Bomb Tests: Review of the National Cancer Institute Report and Public Health Implications. Washington, DC: The National Academies Press. doi: 10.17226/6283.
×

References

Laird NM. Thyroid cancer risk from exposure to ionizing radiation: a case study in the comparative potency model. Risk Analysis 1987; 7: 299-309.

Lee W, Chiaccierini RP, Schlein B, Telles NC. Thyroid tumors following I-131 or localized x irradiation to the thyroid and the pituitary glands in rats. Radiation Research 1982; 92: 307-319.


NCRP Report No. 80. Induction of thyroid cancer by ionizing radiation. National Council on Radiation Protection and Measurements, Bethesda, 1985.


Ron E, Lubin JH, Shore RE, Mabuchi K, Modan B, Pottern L, Schneider AB, Tucker MA, Boice JD Jr. Thyroid cancer after exposure to external radiation: a pooled analysis of seven studies. Radiat Res 1995; 141: 259-77.


Walinder G. Late effects of irradiation on the thyroid gland of CBA mice. I. Irradiation of adult mice. Acta Radiol Ther Phys Biol 1972; 11: 433.

Suggested Citation:"Appendix B. Copy of the Memorandum from Dr. Charles Land to Dr. Richard Klausner." Institute of Medicine and National Research Council. 1999. Exposure of the American People to Iodine-131 from Nevada Nuclear-Bomb Tests: Review of the National Cancer Institute Report and Public Health Implications. Washington, DC: The National Academies Press. doi: 10.17226/6283.
×

Age at exposure

1952 population count

Estimated average thyroid dose (rad)

ERR at 1 rad (Ron et al. 1995)

Excess rate (lifetime)

Lifetime excess thyroid cancers

Males

Females

Males

Females

Males

Females

Total

 

 

 

 

RBE = 1

 

 

 

 

 

0

1,757,800

1,698,600

10.3

0.098

0.002524

0.00646

4,435.80

10,973.20

15,409.00

1-4

7,171,000

6,931,200

6.7

0.098

0.001642

0.004202

11,771.20

29,126.60

40,897.80

5-9

7,174,043

6,929,430

4.5

0.049

0.000551

0.001411

3,954.70

9,778.80

13,733.50

10-14

6,235,357

6,023,970

2.8

0.0245

0.000172

0.000439

1,069.50

2,644.80

3,714.30

15-19

5,916,664

5,715,114

1.8

0.01225

5.51e-05

0.000141

326.2

806.5

1,132.70

Total

28,255,864

27,298,314

 

 

 

 

21,557

53,330

74,887

 

 

 

 

RBE = 0.66

 

 

 

 

 

0

1,757,800

1,698,600

10.3

0.06468

0.001666

0.004264

2,927.60

7,242.30

10,170.00

1-4

7,171,000

6,931,200

6.7

0.06468

0.001083

0.002773

7,769.00

19,223.50

26,992.50

5-9

7,174,043

6,929,430

4.5

0.03234

0.000364

0.000931

2,610.10

6,454.00

9,064.10

10-14

6,236,357

6,023,970

2.8

0.01617

0.000113

0.00029

705.9

1,745.50

2,451.40

15-19

5,916,664

5,715,114

1.8

0.008085

3.64e-05

9.31e-05

215.3

532.3

747.6

Total

28,255,864

27,298,314

 

 

 

 

14,228

35,198

49,426

 

 

 

 

RBE = 0.3

 

 

 

 

 

0

1,757,800

1,698,600

10.3

0.0294

0.000757

0.001938

1,330.70

3,292.00

4,622.70

1-4

7,171,000

6,931,200

6.7

0.0294

0.000492

0.001261

3,531.40

8,738.00

12,269.30

5-9

7,174,043

6,929,430

4.5

0.0147

0.000165

0.000423

1,186.40

2,933.6

4,120.10

10-14

6,236,357

6,023,970

2.8

0.00735

5.15e-05

0.000132

320.9

793.4

1,114.30

15-19

5,915,664

5,715,114

1.8

0.003675

1.65e-05

4.23e-05

97.8

242

339.8

Total

28,255,864

27,298,314

 

 

 

 

6,467

15,999

22,466

 

 

 

 

RBE = 0.1

 

 

 

 

 

0

1,757,800

1,698,600

10.3

0.0098

0.000252

0.000646

443.6

1,097.30

1,540.90

1-4

7,171,000

6,931,200

6.7

0.0098

0.000164

0.00042

1,177.10

2,912.70

4,089.80

5-9

7,174,043

6,929,430

4.5

0.0049

5.51e-05

0.000141

395.5

977.9

1,373.40

10-14

6,236,357

6,023,970

2.8

0.00245

1.72e-05

4.39e-05

107

264.5

371.4

15-19

5,916,664

5,715,114

1.8

0.001225

5.51e-06

1.41e-05

32.6

80.7

113.3

Total

28,255,864

27,298,314

 

 

 

 

2,156

5,333

7,489

Suggested Citation:"Appendix B. Copy of the Memorandum from Dr. Charles Land to Dr. Richard Klausner." Institute of Medicine and National Research Council. 1999. Exposure of the American People to Iodine-131 from Nevada Nuclear-Bomb Tests: Review of the National Cancer Institute Report and Public Health Implications. Washington, DC: The National Academies Press. doi: 10.17226/6283.
×

Written amendment to 23 September memo, provided by Charles Land to NAS committee on 19 December, 1997

Calculation of the Estimated Lifetime Risk of Radiation-Related Thyroid Cancer in the U.S. Population from NTS Fallout

  1. Thyroid cancer risk associated with gamma-ray and x-ray exposure, from studies of the Hiroshima-Nagasaki survivors and of various medically-exposed populations, is well quantified. Findings are summarized in a pooled analysis of seven studies (Ron et al., Radiation Research 1995; 141:259-277).

    • The evidence for a radiation-related risk is strong for childhood exposure, and weak or non-existent for adult exposure.

    • Dose-specific excess risk decreases with increasing age at exposure. At ages 5-9, it is about half that associated with exposure at ages 0-4, and at 10-14 it is about half that at 5-9.

    • For any given exposure age, excess risk appears to be proportional to thyroid dose (linear dose response).

    • Ron et al. estimated an excess relative risk (ERR) of 7.7 per Gy, or 0.077 per rad, for childhood exposure at ages younger than 15.

  1. The average (case-weighted) exposure age in the pooled data was a little over 4 1/2 years. By linear interpolation between the midpoints of the first two intervals, and extension of the observed reduction in ERR with increasing age at exposure, the following age-specific coefficients were inferred:

Age at exposure

ERR at 1 rad

0-4

0.098

5-9

0.049

10-14

0.0245

>20

negligible

  1. Although there was evidence of variation radiation-related relative risk over time following exposure, there was no evidence of a trend. Accordingly, ERR was assumed to remain constant over the remainder of life.

  2. Data on risk associated with thyroid exposure from ingested or inhaled 131I suggest that there is a risk, but precise dose-response estimates are not available. Accordingly, it is reasonable to use the coefficients developed from data on x-ray and gamma-ray exposure, with an appropriate value for the relative biological effectiveness of 131I compared to gamma rays or x rays.

    • NCRP report No. 80, "Induction of Thyroid Cancer by Ionizing Radiation," 1985, gave a range of 0.1 to 1.0 for the RBE, based on experimental studies. The report recommended 0.3 for radiation protection purposes, as the highest credible value. The NCRP report also stated that the RBE of

Suggested Citation:"Appendix B. Copy of the Memorandum from Dr. Charles Land to Dr. Richard Klausner." Institute of Medicine and National Research Council. 1999. Exposure of the American People to Iodine-131 from Nevada Nuclear-Bomb Tests: Review of the National Cancer Institute Report and Public Health Implications. Washington, DC: The National Academies Press. doi: 10.17226/6283.
×

131I relative to x ray may be lower at high doses and dose rates, and higher (nearer to x ray in effectiveness) at low doses and dose rates.

  • Thus, Walinder (1972, summarized in the NCRP report) obtained an RBE of 0.1 using 131I thyroid doses in the range 2200-11,000 rad, whereas

  • Lee et al. (1982) found near equivalence using dose groups at 80, 330, and 850 rad.

  • Laird (1987) conducted parallel and combined analyses of 6 cohorts of children exposed to external radiation and one exposed to 131I, and reevaluated experimental data from the large study by Lee et al. (1982) specifically designed to investigate the RBE of 131I. Her RBE estimate was 0.66 with 95% confidence limits 0.14-3.15 (however, there is no support that I know of for an RBE greater than 1).

  • The RBE value at low doses remains a contentious issue.

  • In the calculations for NCI, RBE values of 1, 0.66, 0.33, and 0.1 were assumed.

  1. In addition to being more sensitive to the carcinogenic effects of ionizing radiation, the thyroid glands of children receive higher doses from ingested or inhaled 131I than do the glands of adults, because of smaller gland size, higher intake of milk, and higher metabolism. Using conversion factors obtained from Dr. Bouville, the estimated average thyroid dose of 2 rad to the U.S. population from Nevada Test Site fallout was converted to the following values for children:

Exposure Age

Estimated Average Dose

<1

10.3

1-4

6.7

5-9

4.5

10-14

2.8

15-19

1.8

  1. Lifetime cumulative thyroid cancer incidence rates of 0.25% for males and 0.64% for females, respectively, were assumed, based on the SEER report for 1973-1992. The 1973-1994 SEER volume is now out, and gives 0.27% for males and 0.66% for females. Use of the new values would increase the total by about 4%.

  2. For simplicity of calculation, it was assumed that the U.S. population in 1952 received the total thyroid dose from NTS fallout in that year, instead of spread out over 12 years. This simplification was possible because, using a linear dose-response model, lifetime radiation-related thyroid cancer risk is proportional to summed collective dose, in person-rads, over exposure ages weighted by age-specific risk coefficient.

Suggested Citation:"Appendix B. Copy of the Memorandum from Dr. Charles Land to Dr. Richard Klausner." Institute of Medicine and National Research Council. 1999. Exposure of the American People to Iodine-131 from Nevada Nuclear-Bomb Tests: Review of the National Cancer Institute Report and Public Health Implications. Washington, DC: The National Academies Press. doi: 10.17226/6283.
×
  1. For each single year of age (column 1 in the spreadsheet), the sex-specific estimated numbers of lifetime excess thyroid cancer cases in the US due to NTS fallout (columns 8 and 9) were obtained as the product of:

  • the number of male or female persons in the 1952 US population (columns 2 and 3)

  • the age-specific estimated average cumulative thyroid dose over the entire period of above-ground testing (column 4)

  • the age-specific linear dose-response coefficient (ERR at 1 rad) for x ray and gamma ray (column 5), times the assumed RBE for 131I

  • the cumulative lifetime thyroid cancer risk for men or women (0.25% or 0.64%), as appropriate.

  1. The age and sex-specific totals were summed over sexes (column 10) and ages. The sums are given below columns 8-10 in each table.

  2. Besides uncertainty about the RBE, there is also statistical uncertainty about the risk coefficients, and subjective and statistical uncertainty about the average doses used. The combined uncertainty is substantial. For example:

    • 95% confidence limits (2.1-28.7) for the Ron estimate of ERR1Gy = 7.7 correspond approximately to a lognormal model geometric standard deviation (GSD) of about 1.95.

    • The uncertainty of average dose estimated by the NCI, 2 rad, was stated to be between 1 and 4, i.e., a factor of 2 in each direction. This corresponds approximately to 95% confidence limits and thus to a GSD of about 1.4.

    • Therefore, the product of that dose and the estimated ERR at 1 rad has a GSD of 2.1 (calculated as the exponential of the square root of the sum of squares of the natural logarithms of 1.95 and 1.4).

    • Approximate 95% confidence limits for the number of excess cases can be obtained by dividing and multiplying by 4.3 (=2.11.96). Thus, for example, ignoring all other possible sources of error, an estimate of 49,000 lifetime excess cases (corresponding to a fixed RBE of 0.66, which here is assumed to be known without error) might be given with uncertainty 11,300-212,000.

Suggested Citation:"Appendix B. Copy of the Memorandum from Dr. Charles Land to Dr. Richard Klausner." Institute of Medicine and National Research Council. 1999. Exposure of the American People to Iodine-131 from Nevada Nuclear-Bomb Tests: Review of the National Cancer Institute Report and Public Health Implications. Washington, DC: The National Academies Press. doi: 10.17226/6283.
×
Page 186
Suggested Citation:"Appendix B. Copy of the Memorandum from Dr. Charles Land to Dr. Richard Klausner." Institute of Medicine and National Research Council. 1999. Exposure of the American People to Iodine-131 from Nevada Nuclear-Bomb Tests: Review of the National Cancer Institute Report and Public Health Implications. Washington, DC: The National Academies Press. doi: 10.17226/6283.
×
Page 187
Suggested Citation:"Appendix B. Copy of the Memorandum from Dr. Charles Land to Dr. Richard Klausner." Institute of Medicine and National Research Council. 1999. Exposure of the American People to Iodine-131 from Nevada Nuclear-Bomb Tests: Review of the National Cancer Institute Report and Public Health Implications. Washington, DC: The National Academies Press. doi: 10.17226/6283.
×
Page 188
Suggested Citation:"Appendix B. Copy of the Memorandum from Dr. Charles Land to Dr. Richard Klausner." Institute of Medicine and National Research Council. 1999. Exposure of the American People to Iodine-131 from Nevada Nuclear-Bomb Tests: Review of the National Cancer Institute Report and Public Health Implications. Washington, DC: The National Academies Press. doi: 10.17226/6283.
×
Page 189
Suggested Citation:"Appendix B. Copy of the Memorandum from Dr. Charles Land to Dr. Richard Klausner." Institute of Medicine and National Research Council. 1999. Exposure of the American People to Iodine-131 from Nevada Nuclear-Bomb Tests: Review of the National Cancer Institute Report and Public Health Implications. Washington, DC: The National Academies Press. doi: 10.17226/6283.
×
Page 190
Suggested Citation:"Appendix B. Copy of the Memorandum from Dr. Charles Land to Dr. Richard Klausner." Institute of Medicine and National Research Council. 1999. Exposure of the American People to Iodine-131 from Nevada Nuclear-Bomb Tests: Review of the National Cancer Institute Report and Public Health Implications. Washington, DC: The National Academies Press. doi: 10.17226/6283.
×
Page 191
Suggested Citation:"Appendix B. Copy of the Memorandum from Dr. Charles Land to Dr. Richard Klausner." Institute of Medicine and National Research Council. 1999. Exposure of the American People to Iodine-131 from Nevada Nuclear-Bomb Tests: Review of the National Cancer Institute Report and Public Health Implications. Washington, DC: The National Academies Press. doi: 10.17226/6283.
×
Page 192
Suggested Citation:"Appendix B. Copy of the Memorandum from Dr. Charles Land to Dr. Richard Klausner." Institute of Medicine and National Research Council. 1999. Exposure of the American People to Iodine-131 from Nevada Nuclear-Bomb Tests: Review of the National Cancer Institute Report and Public Health Implications. Washington, DC: The National Academies Press. doi: 10.17226/6283.
×
Page 193
Next: Appendix C. Calculation of Collective Thyroid Dose to the U.S. Population from the Release of I-131 from the Nuclear Weapons Tests in Nevada »
Exposure of the American People to Iodine-131 from Nevada Nuclear-Bomb Tests: Review of the National Cancer Institute Report and Public Health Implications Get This Book
×
Buy Paperback | $48.00 Buy Ebook | $38.99
MyNAP members save 10% online.
Login or Register to save!
Download Free PDF

In 1997, after more than a decade of research, the National Cancer Institute (NCI) released a report which provided their assessment of radiation exposures that Americans may have received from radioactive iodine released from the atomic bomb tests conducted in Nevada during the 1950s and early 1960s. This book provides an evaluation of the soundness of the methodology used by the NCI study to estimate:

  • Past radiation doses.
  • Possible health consequences of exposure to iodine-131.
  • Implications for clinical practice.
  • Possible public health strategies—such as systematic screening for thyroid cancer—to respond to the exposures.

In addition, the book provides an evaluation of the NCI estimates of the number of thyroid cancers that might result from the nuclear testing program and provides guidance on approaches the U.S. government might use to communicate with the public about Iodine-131 exposures and health risks.

  1. ×

    Welcome to OpenBook!

    You're looking at OpenBook, NAP.edu's online reading room since 1999. Based on feedback from you, our users, we've made some improvements that make it easier than ever to read thousands of publications on our website.

    Do you want to take a quick tour of the OpenBook's features?

    No Thanks Take a Tour »
  2. ×

    Show this book's table of contents, where you can jump to any chapter by name.

    « Back Next »
  3. ×

    ...or use these buttons to go back to the previous chapter or skip to the next one.

    « Back Next »
  4. ×

    Jump up to the previous page or down to the next one. Also, you can type in a page number and press Enter to go directly to that page in the book.

    « Back Next »
  5. ×

    Switch between the Original Pages, where you can read the report as it appeared in print, and Text Pages for the web version, where you can highlight and search the text.

    « Back Next »
  6. ×

    To search the entire text of this book, type in your search term here and press Enter.

    « Back Next »
  7. ×

    Share a link to this book page on your preferred social network or via email.

    « Back Next »
  8. ×

    View our suggested citation for this chapter.

    « Back Next »
  9. ×

    Ready to take your reading offline? Click here to buy this book in print or download it as a free PDF, if available.

    « Back Next »
Stay Connected!