Water utilities have traditionally been involved in treating groundwater at the wellhead, or just before its entry into the distribution system. Rarely is water treated by a utility at the tap of the individual home or business because SDWA requirements dictate that water quality be acceptable when water leaves the treatment plant and enters the distribution system, as well as when it arrives at the consumer's tap. Where a decrease in water quality is expected (for example, because of microbial regrowth in the distribution system), a remedy is used to maintain standards (for example, a disinfectant is introduced to prevent regrowth).

If a multimedia approach to the radon problem involves mitigation of air in specifically targeted homes, water utilities will have to oversee the installation, operation, and maintenance of mitigation systems in individual homes. Utilities might have some experience installing, operating and maintaining point-of-entry systems for water in homes, but they are unlikely to have any experience with air mitigation. It is not clear how a water utility, especially a small one, will address this demand for expertise in air mitigation. Many small utilities would have to contract out the installation of the system and then determine how they will monitor the continuing performance at every home. The installation, operation, and maintenance of the airborne-radon reduction systems in individual homes and businesses presents a substantial problem in routinely gaining access to the areas where the treatment units are so that they can be monitored and maintained as required.

Historically, within EPA and many state governments, the personnel addressing issues of airborne and waterborne radon are in different departments, divisions, or even agencies. This division of responsibilities has hindered coordination of policy and response to radon-related issues. The problem is compounded by the fact that waterborne-radon concentrations will be regulated, whereas airborne-radon concentrations are not (only guidelines are provided for indoor-air concentrations). If multimedia approaches to radon are implemented, there will be a need for interaction between the government entities charged with the regulation of radon in water and those familiar with airborne-radon mitigation. It is clear that multimedia approaches to radon mitigation will be varied, and this will require substantial cooperation within and among EPA, the state agencies involved in airborne-and waterborne-radon mitigation and monitoring, water utilities, and local governments. Thus, major problems in policy implementation will need to be addressed.

Another potential problem can be illustrated by a related example. The Water Pollution Control Act Amendments of 1972 mandated that all communities, at a minimum, achieve secondary treatment of their wastewater. In 1977, Congress modified that requirement to allow communities discharging into marine waters to apply for a waiver of secondary treatment if they could demonstrate that it would cause no adverse effect on the environment. The waiver was intended, in part, to relieve rural villages with very small wastewater discharges in such places as Alaska, of the burden of building and operating secondary treatment

The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement