National Academies Press: OpenBook
« Previous: Executive Summary
Suggested Citation:"1 Introduction and Background." National Research Council. 1998. A Review of Decontamination and Decommissioning Technology Development Programs at the Department of Energy. Washington, DC: The National Academies Press. doi: 10.17226/6290.
×

1
Introduction and Background

This report is the result of a study requested by the U.S. Department of Energy's (DOE) Office of Science and Technology (OST) as part of its efforts to improve the effectiveness of its Deactivation and Decontamination Focus Area (DDFA). The statement of task for the study, which is provided in Appendix A, directed the National Research Council (NRC) to convene a committee to review the utility and effectiveness of key aspects of the DDFA's program:

  1. Approaches used to select and evaluate alternative decontamination and decommissioning technologies;
  2. Methods of seeking deployment of the selected technologies among the DOE operating sites, with emphasis on the Large-Scale Demonstration Program (LSDP);
  3. Processes used to compare the advantages of the alternative technologies to currently used technologies.
  • In conformance with the statement of task, the committee examined the technology development activities of the DDFA. Most information was obtained from presentations made by representatives of DOE's Office of Environmental Management (EM), OST, DDFA, and its contractors, and from publicly available reports. Committee members visited three LSDP sites, interviewed site and contractor personnel, and recorded their findings (see Appendixes C-F).

    In preparing this report, the committee has described the development of the DDFA within DOE and the main activities of the DDFA in the following section of this chapter. Chapter 2 provides a discussion of the findings and conclusions

  • Suggested Citation:"1 Introduction and Background." National Research Council. 1998. A Review of Decontamination and Decommissioning Technology Development Programs at the Department of Energy. Washington, DC: The National Academies Press. doi: 10.17226/6290.
    ×

    developed by the committee during its study. Recommendations resulting from the study are given in Chapter 3.

    Program Developments in the Department of Energy's Office of Environmental Management and in the Deactivation and Decommissioning Focus Area

    In November 1989, DOE established its Office of Environmental Management.5 The mission of the EM program is to bring DOE sites into compliance with all applicable regulations while minimizing risks to the environment and human health and safety posed by the generation, handling, treatment, storage, transportation, and disposal of DOE waste. The undertaking was projected to cost billions of dollars each year for many decades to come and to require additional remediation technologies (DOE, 1995a). An Office of Technology Development (OTD, EM-50)6 was formed in 1989 within EM and charged with carrying out an aggressive national program of applied research and development (technology development program) to meet environmental restoration and waste management needs within the DOE complex. The basic premise was that through development of new technology, cleanup could be achieved "faster, cheaper, better, and more safely" (DOE, 1995b). Since its inception, OTD (now OST) has employed a variety of programs and approaches to fulfill its charge; Table I summarizes EM-OST initiatives during the period 1989–98 that are relevant to the DDFA.

    To ensure that EM's programs focused on the most urgent environmental restoration and waste management problems, Thomas Grumbly, then Assistant Secretary for Environmental Management, established a Working Group in August 1993 to implement a new approach to environmental research and technology development. A key feature of this new approach was establishment of five focus areas within OTD to address DOE's most pressing problems (DOE, 1995b). These focus areas were:

    1. High Level Radioactive Waste Tank Remediation,
    2. Mixed Waste Characterization, Treatment, and Disposal,
    3. Contaminant Plume Containment and Remediation,7
    4. Landfill Stabilization,7
    5. Facility Transitioning, Decommissioning, and Final Disposition8
  • 5  

    The original name was Office of Environmental Restoration and Waste Management; it was renamed in 1994.

    6  

    EM-50 is one of seven Deputy Assistant Secretary Offices within EM (designated EM-10 through EM-70), all of which report to the Assistant Secretary for Environmental Management (EM-1). OTD (EM-50) was renamed the Office of Science and Technology (OST) in 1995.

    7  

    Focus areas 3 and 4 were later combined and renamed "Subsurface Contaminants."

    8  

    First renamed Decontamination and Decommissioning, and more recently Deactivation and Decommissioning Focus Area (DOE, 1998a).

  • Suggested Citation:"1 Introduction and Background." National Research Council. 1998. A Review of Decontamination and Decommissioning Technology Development Programs at the Department of Energy. Washington, DC: The National Academies Press. doi: 10.17226/6290.
    ×

     

    Suggested Citation:"1 Introduction and Background." National Research Council. 1998. A Review of Decontamination and Decommissioning Technology Development Programs at the Department of Energy. Washington, DC: The National Academies Press. doi: 10.17226/6290.
    ×

    The focus areas formed the core of OST's integrated team structure for research and technology development to assist EM's mission. As an adjunct to the establishment of the focus areas, the NRC's Committee on Environmental Management Technologies (CEMT) was formed in 1994 at the request of Mr. Grumbly to provide continuing independent advice to DOE-EM on its technology development program. As part of this effort, a subcommittee on D&D was formed under the CEMT.9

    The DDFA was formed to assure that adequate technologies are available to support EM's task to deactivate more than 7,000 contaminated buildings and fully decommission about 10 percent of them. In addition to the buildings themselves, the task included decontamination of the metal and concrete within those buildings and disposal of some 180,000 metric tons of scrap metal (DOE, 1996b). When the CEMT Subcommittee on D&D was first briefed (November 1994) by DOE personnel, the efforts of the DDFA had been divided into four main activities: facility deactivation, facility decontamination, facility dismantlement, and materials disposition. The subcommittee was given the three draft planning documents that established the DDFA program in 1995.10 Also in 1995, OST designated the Morgantown (West Virginia) Energy Technology Center (METC) as the lead organization for the DDFA. Now called the Federal Energy Technology Center (FETC), it administers the DDFA programs (Bedick et al., 1996). Table 2 summarizes FETC programs in the DDFA for 1997.

    The emphasis in the DDFA was to select and demonstrate technologies that were mature enough to be implemented in actual cleanup activities, i.e., those that were deemed to be ready for the end user. The DDFA intended to look first at commercial technologies that had never been used in the DOE complex or that had been used in the complex but not applied to D&D before developing truly new technologies (DOE, 1996b). The DDFA applies the term "innovative" technology to those technologies that 1) have been used commercially but not yet applied in the DOE environment, 2) are being used in a new way, or 3) are still under development. This approach follows the basic premise within EM that technology development will result in substantial reductions in time and cost and in increased effectiveness of the cleanup work as compared to the baseline case, which assumes the use of "available" technologies11 (DOE, 1996c). To encour-

    9  

    The D&D subcommittee, as well as the other CEMT subcommittees, were reorganized as independent committees under the NRC Board on Radioactive Waste Management in 1997.

    10  

    The three documents, in draft form, were: Decontamination and Decommissioning Focus Area: Technology Summary, DOE/EM-0253, June, 1995; Strategic Plan: Decontamination and Decommissioning Focus Area, Pre-Decisional Draft, July 14, 1995; and Implementation Plan, Decontamination and Decommissioning Focus Area, prepared by U.S. DOE Morgantown Energy Technology Center, July 18, 1995.

    11  

    "Available" technologies are those currently used within the DOE complex. The expected cost and performance "baseline" is derived assuming their use. Such technologies are referred to as "baseline technologies" in this report.

    Suggested Citation:"1 Introduction and Background." National Research Council. 1998. A Review of Decontamination and Decommissioning Technology Development Programs at the Department of Energy. Washington, DC: The National Academies Press. doi: 10.17226/6290.
    ×

    TABLE 2 FETC D&D Program Status at End of 1997 (Hart, 1997)

    Program

    1997 Budget

    Number of Projects

    Basic Science

    $1.8 million

     

    Characterization

     

    3

    Deactivation

     

    1

    Decontamination

     

    5

    Containment

     

    2

    Waste Reduction

     

    3

    Applied R&D

    $19.8 million

     

    Characterization

     

    4

    Deactivation

     

    4

    Dismantlement

     

    4

    Waste Disposition

     

    3

    LSDPs

    $8.1 million

     

    Fernald Plant 1

     

    10/4*

    Hanford C-Reactor

     

    14/5*

    CP-5 Reactor

     

    21/8*

    * Technologies demonstrated/technologies deployed.

    age DOE sites to use innovative technologies and to develop cost comparison data, the LSDP was established in 1995. The LSDP was intended to be a cornerstone of DDFA and provide a means for side-by-side comparison of "innovative" versus baseline technologies (DOE, 1996b). As specified in the statement of task, the LSDP is a significant part of this committee's review. The program is discussed in detail later in this report.

    In 1996, Alvin Alm succeeded Thomas Grumbly as Assistant Secretary for Environmental Management. Mr. Alm announced a Ten Year Plan, which stated: "Within a decade, the Environmental Management program will complete cleanup at most sites" (DOE, 1997c).12 DOE sites were asked to revise their cleanup strategies and develop plans in response to this new directive. Although it represented a fundamental change in EM's site cleanup schedule, the Ten Year Plan acknowledged that even with the accelerated effort, "50 percent of the work" would remain after year 2006, particularly at the larger sites (DOE, 1997c). Budget estimates show that about 40 percent of the total cleanup cost (in 1998 dollars) will be incurred before year 2006 and about 60 percent after year 2006 (DOE, 1998b). Because D&D occurs near the end of the chain of activities in

    12  

    Mr. Alm's initiative originally was referred to as the Ten Year Plan, subsequently the 2006 Plan and, most recently, Paths to Closure (DOE, 1998b). Mr. Alm described his Ten Year Plan to the NRC Board on Radioactive Waste Management in October 1996. The final version, Paths to Closure, was not reviewed by the committee.

    Suggested Citation:"1 Introduction and Background." National Research Council. 1998. A Review of Decontamination and Decommissioning Technology Development Programs at the Department of Energy. Washington, DC: The National Academies Press. doi: 10.17226/6290.
    ×

    each site, and because the most difficult D&D tasks will be encountered at the larger sites, about 80 percent of the total costs of deactivation, decontamination, and decommissioning will be incurred after the year 2006 (DOE, 1997d).

    Deploying alternative and more effective technologies is expected to play a key role in the productivity enhancements required by the Ten Year Plan (Alm, 1997). Accordingly a new program, the Technology Deployment Initiative (TDI), was established by OST in 1997 to promote deployment of previously developed OST technologies for actual cleanup applications (DOE, 1997c). The TDI is discussed in more detail later in this chapter.

    In July 1996 DOE/OST published a D&D technology needs document that was intended to represent complex-wide DOE technology needs (DOE, 1996a). This document was compiled from needs identified by the Site Technology Coordination Group (STCG) that was formed at each DOE operating site. Each STCG consisted of a site coordinator and members who compiled site technology needs in each of OST's focus areas.13 Altogether some 535 technology needs were identified, including about 100 needs in the DDFA. Linkage Tables that identified multiple site needs for a given technology subsequently were developed (DOE, 1997a).

    In the third quarter of 1996, in DOE's appropriations for FY97, Congress directed that $50 million be used to develop a basic research program focused on long-term cleanup needs across the DOE complex (NRC, 1997). The program, called the Environmental Management Science Program, has the mission to (1) develop targeted, long-term basic research for environmental problems so that breakthrough approaches will lead to significantly reduced cleanup costs and risks to workers and the public; (2) bridge the gap between broad fundamental research and needs-driven applied technology, and; (3) serve as a stimulus for focusing the nation's science infrastructure on critical national environmental management problems (NRC, 1997). Funds provided by the program are awarded competitively to national laboratories, other federal laboratories, and academic and industrial organizations. To ensure that the program is mission oriented and that its achievements are recognized and used by EM, the science program is integrated closely with the focus areas and also is coordinated with the DOE Office of Energy Research to ensure that the broad-based fundamental research and development supported by that office is used (DOE, 1996d). In 1997 basic science program funding for DDFA projects was $1.8 million (Table 2).

    The Large-Scale Technology Demonstration Program

    The Large-Scale Technology Demonstration Program was intended to be a cornerstone in the deployment of innovative technologies selected by DDFA. In

    13  

    STCG members include representatives of DOE, contractors, the Environmental Protection Agency (EPA), local tribal nations, and other stakeholders.

    Suggested Citation:"1 Introduction and Background." National Research Council. 1998. A Review of Decontamination and Decommissioning Technology Development Programs at the Department of Energy. Washington, DC: The National Academies Press. doi: 10.17226/6290.
    ×

    accordance with its Statement of Task (Appendix A), the D&D committee spent a great deal of time in evaluating the utility and effectiveness of this approach. The stated purpose of the LSDP is to validate performance of D&D technologies and introduce the application of alternative technologies in parallel with baseline technologies (Boyd, 1997b). The demonstration is carried out as a part of an actual, on-going D&D project at a DOE site. To achieve its purpose the LSDP is intended to:

    • Reduce risks from first time application of "new" D&D technologies;
    • Provide an opportunity to compare performance of new technology to baseline technology; and
    • Provide an opportunity to showcase new technologies and vendors.

    The LSDP was initiated in July 1995 when FETC sent a Request for Letter Proposals to all DOE Operations Offices. The request contained the LSDP selection criteria established by the DDFA. These criteria included: significance of the proposed demonstration (especially for cost reduction in future projects), readiness of the proposed demonstration, site commitment, and project management (DOE, 1996b). The sites were requested to offer facilities that were undergoing D&D as a part of the site operation to be host facilities for demonstrations of new technologies. This would afford opportunities to test the innovative (new to the DOE complex) technologies alongside baseline technologies. Eight letter proposals were received in response to the request. In October 1995 DDFA selected proposals from three sites to incorporate LSDPs into actual D&D projects. These projects were the Plant 1 uranium processing complex at the Fernald Environmental Management Project in Ohio, the CP-5 Reactor at Argonne National Laboratory in Illinois, and the C-Reactor at the Hanford Reservation in Washington (DOE, 1996b). During this study, committee members visited these locations to observe the LSDP activities in progress and to discuss the demonstration with DOE and contractor personnel on site. Reports of these site visits are given in Appendixes C-F of this report.

    The initial LSDPs had several common elements: Decommissioning plans using standard (baseline) technologies already had been established, technology selection criteria had been established (albeit independently at each location), industry-government partnerships were in place, and, most importantly, each site had requested that it participate. Technologies actually demonstrated have come mainly from the commercial sector. Table 3 provides a list of technologies that were demonstrated during the committee's review period.

    Cost savings versus the baseline technology were expected to provide incentive for the DOE sites to adopt innovative technologies. In June 1995 the DDFA acquired the services of the U.S. Army Corps of Engineers (the Corps) to establish an independent comparison of the cost of accomplishing a task using an innovative technology versus the baseline technology (Kessinger and Greenwald, 1997). Initially DDFA planned for the Corps to use baseline costs supplied by the site, and independently estimate the cost of using the new technology to accomplish the

    Suggested Citation:"1 Introduction and Background." National Research Council. 1998. A Review of Decontamination and Decommissioning Technology Development Programs at the Department of Energy. Washington, DC: The National Academies Press. doi: 10.17226/6290.
    ×

    TABLE 3 LSDP Technology Demonstrations

    A. Technology Demonstrations at CP-5 Reactor

    Technology

    Area Problem

    Description

    Mobile Automated Characterization System

    Characterization

    Battery-powered, autonomous robot base with a laser positioning system that can detect alpha and beta/gamma contamination.

    Pipe Explorer

    Characterization

    In-situ piping characterization system.

    X-ray Fluorescence Detection

    Characterization

    In-situ characterization system.

    Gamma Camera

    Characterization

    Visual imaging of area radiation levels.

    SRA Surface Contamination Monitor

    Characterization

    Consists of a wide area, computer controlled, position sensitive proportional counter that is mounted on a motorized cart (used at CP-5 for beta/gamma).

    Pipe Crawler

    Characterization

    In-situ piping and duct work characterization system.

    Field Transportable Beta Counter

    Characterization

    Instrument provides for real-time detection and spectral analysis of Sr-90, Cs-137, Tc-99, and other beta emitters in the 40-picocurie range.

    In-situ Object Counting System

    Characterization

    Radiological monitoring system used to measure small levels of contamination on large objects or surfaces.

    Pegasus Coating Removal System

    Decontamination

    Coating removal system using strippable chemicals.

    Centrifugal Shot Blasting

    Decontamination

    Effectively removes layers of concrete to varying depths, without dust.

    Flashlamp Decontamination

    Decontamination

    Intense light breaks the chemical bond between the material and surface. Material residues and gases are collected by vacuum.

    Suggested Citation:"1 Introduction and Background." National Research Council. 1998. A Review of Decontamination and Decommissioning Technology Development Programs at the Department of Energy. Washington, DC: The National Academies Press. doi: 10.17226/6290.
    ×

     

    A. Technology Demonstrations at CP-5 Reactor

    Technology

    Area Problem

    Description

    Rotopeen Scabbling

    Decontamination

    This decontamination system for concrete surfaces consists of abrading media (Heavy Duty Roto Peen), surface planing equipment, and high-volume vacuum.

    Concrete Milling

    Decontamination

    Permits selective removal of contaminants from concrete substrate.

    Advanced Recyclable Media System

    Decontamination

    Blasting system using recyclable, specially impregnated sponges.

    Empore Membrane Separation

    Decontamination

    Uses ion-exchange resins embedded in membrane material within a net-like fibril matrix to remove contaminants in water.

    Swing-Free Crane

    Dismantlement

    Allows a load suspended from a gantry crane to be moved without inducing any undesired swinging motion.

    Dual-Arm Work Platform

    Dismantlement

    Provides flexibility for cooperative and coordinated actions by using two robotic arms.

    Rosie Mobile Work Station

    Dismantlement

    An electro-hydraulic, omni-directional locomotor platform with a heavy manipulator mounted on its deck. The heavy manipulator boom can deploy a large number of tools for demolition and decontamination.

    Remote Controlled Concrete Demolition System

    Dismantlement

    Uses a remote-controlled, track-driven, service-robot, known as the Brokk BM 150, that employs an articulated hydraulic boom with various end-effectors to accomplish a variety of tasks.

    NU-FAB Suit

    Health and Safety

    One-piece, microporous, disposable, waterproof coverall to be used in hot/wet atmospheres.

    FHRAM-TEX Cool Suit

    Health and Safety

    One-piece disposable, breathable, waterproof coverall for hot/wet atmospheres.

    Suggested Citation:"1 Introduction and Background." National Research Council. 1998. A Review of Decontamination and Decommissioning Technology Development Programs at the Department of Energy. Washington, DC: The National Academies Press. doi: 10.17226/6290.
    ×

     

    B. Technology Demonstrations at Fernald Plant-1

    Technology

    Area Problem

    Description

    Field Raman Spectroscopy

    Characterization

    A fast and effective way to detect contaminants through in-situ compound analysis.

    Laser-Induced Fluorescence Imaging

    Characterization

    A fast and accurate uranium characterization tool.

    Pipe Inspection System

    Characterization

    Involves a small monitor/VCR equipped with a tiny, light-bearing camera probe used to perform remote inspection and record results.

    Sponge Jet Cleaning of Equipment

    Decontamination

    This technology is comparable to steam-jet cleaning or water washing technologies. However, since it does not use water, it can be used to clean material containing enriched uranium.

    Steam Cleaning with Vacuum Recovery

    Decontamination

    This technology uses a pressurized, heated stream of water that flashes to steam when it impacts the surface being cleaned. The steam is then vacuum collected and recycled.

    Oxy-gasoline Torch

    Dismantlement

    Low-cost, clean-cutting, highly effective metal cutting technology.

    Vacuum Removal of Insulation

    Dismantlement

    System was used to remove rock-wool insulation efficiently from walls while controlling airborne contamination.

    Void Filling with Low-Density Cellular Concrete

    Waste Management

    Used to fill voids in hollow components to meet waste disposal cell acceptance criteria.

    Void Filling with Foam

    Waste Management

    Used to fill voids in hollow components to meet waste disposal cell acceptance criteria.

    Suggested Citation:"1 Introduction and Background." National Research Council. 1998. A Review of Decontamination and Decommissioning Technology Development Programs at the Department of Energy. Washington, DC: The National Academies Press. doi: 10.17226/6290.
    ×

     

    B. Technology Demonstrations at Fernald Plant-1

    Technology

    Area Problem

    Description

    Personal Ice Cooling System

    Health and Safety

    Incorporates small diameter tubing into a comfortable full-body suit. Chilled water is circulated through tubing that is attached to a pump unit and a small ice container.

    C. Technology Demonstrations at C-Reactor

    Technology

    Area Problem

    Description

    Laser-Assisted Ranging and Data System

    Characterization

    Performs accurate and repeatable radiological characterization surveys of indoor building surfaces. It is electronically coupled to a data collector (AutoCad).

    Gamma Ray Imaging

    Characterization

    Provides a map of a dose rate of an area superimposed on its visible image.

    Position Sensitive Radiation Detector/Monitor

    Characterization

    This detector design turns one large gas-flow proportional counter into 400 or more accurate and sensitive mini-detectors. (Used for beta/gamma and alpha.)

    Concrete Shaving

    Decontamination

    This concrete decontamination system has shaving blades that remove precise layers, leaving a completely smooth, finished surface.

    Surface Decontamination*

    Decontamination

    Will test the ability of innovative technologies to remove surface contaminants from lead, concrete, and the asphalt emulsion covering the fuel basin.

    Structural Steel Decon/Recycling*

    Decontamination

    Will test the ability of innovative technologies to process and free release structural steel for reuse/recycle.

    Self-Contained Pipe Cutting Shears

    Dismantlement

    Battery powered, hand-held, hydraulic mini cutter used for cutting 1''–2" small bore piping.

    Large Bore Pipe Cutting*

    Dismantlement

    Equipment/process that can cut large-bore, horizontally mounted pipe in a congested area, with or without asbestos, which is lightweight and generates low heat.

    Suggested Citation:"1 Introduction and Background." National Research Council. 1998. A Review of Decontamination and Decommissioning Technology Development Programs at the Department of Energy. Washington, DC: The National Academies Press. doi: 10.17226/6290.
    ×

     

    C. Technology Demonstrations at C-Reactor

    Technology

    Area Problem

    Description

    STREAM Management Database System

    Health and Safety

    STREAM (System for Tracking Remediation, Engineering, Activities & Materials) is a Management Database tracking system that provides a number of advantages such as visual and audio training, characterization information, waste tracking and manifests, and tracking of workers training and exposure records.

    Mobile Integrated Temporary Utility System

    Health and Safety

    Integrated temporary power, communication, safety, and alarm systems.

    Self-Contained Air Cooled Respirator/Suits

    Health and Safety

    Liquid air, self-contained breathing and cooling system with duration of 2 hours; worn as a backpack.

    Heat Stress Monitoring System

    Health and Safety

    On-line human-monitoring system developed to provide monitoring where heat stress or other physiological safety issues are a concern.

    Sealed Seamed Sack Suits

    Health and Safety

    Lightweight, durable, waterproof and breathable protective coveralls are assessed against baseline cotton coveralls.

    Reactor Stabilization*

    Stabilization

    Spray-on coating, surface encapsulation to stabilize contaminants on reactor face.

    * Demonstrations employ the use of a broad industry search to identify technologies that address these specific problems. Table courtesy of Steve Bossart and Ken Kasper of DOE FETC, based on their tables from the article, Improved D&D Through Innovative Technology Deployment, published in RadWaste Magazine, January 1998. Reproduced with authors' permission.

    Suggested Citation:"1 Introduction and Background." National Research Council. 1998. A Review of Decontamination and Decommissioning Technology Development Programs at the Department of Energy. Washington, DC: The National Academies Press. doi: 10.17226/6290.
    ×

    same task, based on its actual use in the demonstration. Subsequently, the Corps found that to put the costs on a comparable basis it was necessary that it also estimate the baseline costs (Kessinger, 1997). Further, the Corps found it necessary to average cost standards for labor rates and disposal among the larger sites to obtain a reasonable basis for the cost of implementing a new technology at sites other than the host site (U.S. Army Corps of Engineers, 1997).

    As the program got under way in August 1996, the DDFA stated that these first three LSDPs would be completed by the end of calendar year (CY) 97, and an additional five demonstrations would be completed by the end of CY99. By the end of fiscal year (FY) 2000, DDFA planned, by way of these eight LSDPs, to have demonstrated technologies, systems, and methods to provide capabilities to D&D 90 percent of the surplus facilities and materials (Bedick et al., 1996). Information on the results of the demonstrations was to be promptly disseminated to encourage deployment of successful new technologies. This was to be accomplished primarily by short, one-or two-page fact sheets describing the technology and by detailed summary reports (referred to as "Green Books") that would include details of the demonstration and the Army Corps of Engineers' cost comparison data.

    Near the end of the committee's review period, in November 1997, the 90 percent demonstration goal had slipped two years, to 2002. Two additional LSDPs scheduled to begin in 1997 had been canceled by the DOE field offices. These were the Rocky Flats Building 779 Complex, which was canceled in August 1997, and Oak Ridge Building K-27, which was canceled in October 199714 (DOE, 1997f). By the end of its review period in December 1997, the committee had not received any of the expected technology summaries, and it was understood that none of the three initial LSDPs had been completed.15

    Technology Deployment Initiative

    OST has been criticized by both Congress and the General Accounting Office (GAO) for a poor track record in deployment of new technologies.16 Resistance from the operating sites themselves was seen by OST as a major barrier to deployment of new technologies because the operators considered the new technology to be "risky" or simply "not invented here" (GAO, 1996, 1997). Seeking

    14  

    Four new Large-Scale Demonstration and Deployment Projects (LSDDPs) were announced in 1998 as this report was being completed: Transuranic Waste Technologies at LA)s Alamos National Laboratory, Dismantlement of Tritium-Contaminated Facilities at Mound, Deactivation of 321-M Fuel Fabrication Facility at the Savannah River Site, and Fuel Storage Canals at the Idaho National Environmental and Engineering Laboratory.

    15  

    Five of about 50 expected Technology Summaries were published in February 1998. Since that time, additional summaries have been published.

    16  

    Hearings conducted by Congressman Tom Bliley (R-Va.), Chairman of the House Commerce Committee, and GAO audits and testimony (GAO, 1996, 1997).

    Suggested Citation:"1 Introduction and Background." National Research Council. 1998. A Review of Decontamination and Decommissioning Technology Development Programs at the Department of Energy. Washington, DC: The National Academies Press. doi: 10.17226/6290.
    ×

    to overcome this resistance, OST began the Technology Deployment Initiative in early 1997.

    The TDI mission is to deploy technologies and processes that reduce the DOE-EM "mortgage," accelerate site cleanup, and enhance achievement of Ten Year Plan goals (DOE, 1997g; Alm, 1997). Deployment is defined by OST as implementation of a technology or process through multiple sites or applications. To accomplish this mission, TDI provides financial incentives to sites to implement fully developed, previously demonstrated innovative technologies or processes into their existing or planned cleanup activities. OST has acknowledged that accomplishing the TDI mission will require DOE complex-wide cooperation (DOE, 1997g).

    The TDI has the following objectives:

    • Provide for accelerated multiple deployment of technologies or processes to conduct cleanup (including decontamination and decommissioning) in ways that will reduce EM cleanup costs and support Ten Year Plan goals;
    • Provide third-party validation of cost savings and incentives to site participation through reinvestment of cost savings;
    • Break down barriers that inhibit implementation of technologies or processes; and
    • Achieve closer coordination through joint ownership and funding of projects across DOE EM organizations (DOE, 1997g).

    The TDI was to be a multi-year program with an initial funding level of $50 million for FY98. Proposals from DOE field offices were sought for multiple deployment of technologies and processes for site cleanup (including environmental restoration and waste management, as well as D&D). A screening criterion for all proposals was that they show significant savings in life-cycle costs compared with the baseline technology and that deployment throughout the complex be accomplished without additional OST funding. Proposals were envisaged to not exceed $5 million each unless an exceptional return on investment could be shown (DOE, 1997g; Hyde, 1997). By funding the initial deployment of new technologies, OST intended to alleviate site concerns about incurring technological risk or penalties for schedule delays.

    As a part of OST's increased emphasis on technology deployment assistance, the TDI program was renamed the Accelerated Site Technology Deployment (ASTD) Program in early 1998, as this report was being finalized. The DDFA announced three ASTDs for 1998:1) Enhanced In Situ Decontamination and Size Reduction of Glove Boxes at Rocky Flats, 2) the Los Alamos National Laboratory (LANL) Decontamination and Volume Reduction System, and 3) the Idaho National Environmental and Engineering Laboratories (INEEL)/Fernald Environmental Management Project (FEMP) Integrated Decontamination and Decommissioning. Because the TDI/ASTD began near the end of the committee's review period, it is not assessed in detail in this report.

    Suggested Citation:"1 Introduction and Background." National Research Council. 1998. A Review of Decontamination and Decommissioning Technology Development Programs at the Department of Energy. Washington, DC: The National Academies Press. doi: 10.17226/6290.
    ×
    Page 5
    Suggested Citation:"1 Introduction and Background." National Research Council. 1998. A Review of Decontamination and Decommissioning Technology Development Programs at the Department of Energy. Washington, DC: The National Academies Press. doi: 10.17226/6290.
    ×
    Page 6
    Suggested Citation:"1 Introduction and Background." National Research Council. 1998. A Review of Decontamination and Decommissioning Technology Development Programs at the Department of Energy. Washington, DC: The National Academies Press. doi: 10.17226/6290.
    ×
    Page 7
    Suggested Citation:"1 Introduction and Background." National Research Council. 1998. A Review of Decontamination and Decommissioning Technology Development Programs at the Department of Energy. Washington, DC: The National Academies Press. doi: 10.17226/6290.
    ×
    Page 8
    Suggested Citation:"1 Introduction and Background." National Research Council. 1998. A Review of Decontamination and Decommissioning Technology Development Programs at the Department of Energy. Washington, DC: The National Academies Press. doi: 10.17226/6290.
    ×
    Page 9
    Suggested Citation:"1 Introduction and Background." National Research Council. 1998. A Review of Decontamination and Decommissioning Technology Development Programs at the Department of Energy. Washington, DC: The National Academies Press. doi: 10.17226/6290.
    ×
    Page 10
    Suggested Citation:"1 Introduction and Background." National Research Council. 1998. A Review of Decontamination and Decommissioning Technology Development Programs at the Department of Energy. Washington, DC: The National Academies Press. doi: 10.17226/6290.
    ×
    Page 11
    Suggested Citation:"1 Introduction and Background." National Research Council. 1998. A Review of Decontamination and Decommissioning Technology Development Programs at the Department of Energy. Washington, DC: The National Academies Press. doi: 10.17226/6290.
    ×
    Page 12
    Suggested Citation:"1 Introduction and Background." National Research Council. 1998. A Review of Decontamination and Decommissioning Technology Development Programs at the Department of Energy. Washington, DC: The National Academies Press. doi: 10.17226/6290.
    ×
    Page 13
    Suggested Citation:"1 Introduction and Background." National Research Council. 1998. A Review of Decontamination and Decommissioning Technology Development Programs at the Department of Energy. Washington, DC: The National Academies Press. doi: 10.17226/6290.
    ×
    Page 14
    Suggested Citation:"1 Introduction and Background." National Research Council. 1998. A Review of Decontamination and Decommissioning Technology Development Programs at the Department of Energy. Washington, DC: The National Academies Press. doi: 10.17226/6290.
    ×
    Page 15
    Suggested Citation:"1 Introduction and Background." National Research Council. 1998. A Review of Decontamination and Decommissioning Technology Development Programs at the Department of Energy. Washington, DC: The National Academies Press. doi: 10.17226/6290.
    ×
    Page 16
    Suggested Citation:"1 Introduction and Background." National Research Council. 1998. A Review of Decontamination and Decommissioning Technology Development Programs at the Department of Energy. Washington, DC: The National Academies Press. doi: 10.17226/6290.
    ×
    Page 17
    Suggested Citation:"1 Introduction and Background." National Research Council. 1998. A Review of Decontamination and Decommissioning Technology Development Programs at the Department of Energy. Washington, DC: The National Academies Press. doi: 10.17226/6290.
    ×
    Page 18
    Next: 2 Committee Findings »
    A Review of Decontamination and Decommissioning Technology Development Programs at the Department of Energy Get This Book
    ×
     A Review of Decontamination and Decommissioning Technology Development Programs at the Department of Energy
    Buy Paperback | $29.00
    MyNAP members save 10% online.
    Login or Register to save!
    Download Free PDF

    READ FREE ONLINE

    1. ×

      Welcome to OpenBook!

      You're looking at OpenBook, NAP.edu's online reading room since 1999. Based on feedback from you, our users, we've made some improvements that make it easier than ever to read thousands of publications on our website.

      Do you want to take a quick tour of the OpenBook's features?

      No Thanks Take a Tour »
    2. ×

      Show this book's table of contents, where you can jump to any chapter by name.

      « Back Next »
    3. ×

      ...or use these buttons to go back to the previous chapter or skip to the next one.

      « Back Next »
    4. ×

      Jump up to the previous page or down to the next one. Also, you can type in a page number and press Enter to go directly to that page in the book.

      « Back Next »
    5. ×

      Switch between the Original Pages, where you can read the report as it appeared in print, and Text Pages for the web version, where you can highlight and search the text.

      « Back Next »
    6. ×

      To search the entire text of this book, type in your search term here and press Enter.

      « Back Next »
    7. ×

      Share a link to this book page on your preferred social network or via email.

      « Back Next »
    8. ×

      View our suggested citation for this chapter.

      « Back Next »
    9. ×

      Ready to take your reading offline? Click here to buy this book in print or download it as a free PDF, if available.

      « Back Next »
    Stay Connected!