National Academies Press: OpenBook

Gravitation, Cosmology, and Cosmic-Ray Physics (1986)

Chapter: 7. Gravitational Theory: Introduction

« Previous: 6. Search for Gravitational Waves: Opportunities
Suggested Citation:"7. Gravitational Theory: Introduction." National Research Council. 1986. Gravitation, Cosmology, and Cosmic-Ray Physics. Washington, DC: The National Academies Press. doi: 10.17226/630.
×
Page 59
Suggested Citation:"7. Gravitational Theory: Introduction." National Research Council. 1986. Gravitation, Cosmology, and Cosmic-Ray Physics. Washington, DC: The National Academies Press. doi: 10.17226/630.
×
Page 60

Below is the uncorrected machine-read text of this chapter, intended to provide our own search engines and external engines with highly rich, chapter-representative searchable text of each book. Because it is UNCORRECTED material, please consider the following text as a useful but insufficient proxy for the authoritative book pages.

7 Gravitation Theory: I Few areas of physics apply to such a broad range of phenomena as does Einstein's General Theory of Relativity. Gravity, which it de- scribes, governs our universe on its largest scales and its smallest. Current attempts to construct a quantum theory of gravity confront physics at its most fundamental level. At the same time, relativity is an important element in the variety of physics being used to construct models of pulsars, x-ray sources, quasars, and the universe itself. The theory of relativity is deep and central and has broad application. As a consequence it is actively worked on and has many ties to other disciplines. The General Theory of Relativity was proposed in final form by Einstein in 1916. It is at once a theory of gravity and a theory of the structure of space-time; it attributes the gravitational interaction to the geometric curvature of our space-time continuum. The late 1960s saw the start of a period of exciting development in the area of relativity. In pelt this was brought on by new astronomical discoveries—the discov- eries of pulsars, galactic x-ray sources, possibly black holes, and the 3-K cosmic radiation. Further stimulation came from the fruitful interaction of particle physics and quantum gravity in the development of field-theory techniques that could be applied to both areas and the progress in particle physics toward energy scales where quantum gravity must be important. Fundamental discoveries within the field (the singularity theorems and the Hawking radiation to give just two 59

60 GRA VITATION examples) deepened our understanding, provided new confidence, and enabled the theory to be extended into new domains. This exciting period of development is still under way. Gravity is a very weak force by the standards of elementary-particle physics. The only reason that it is the dominant force on astrophysical length scales is that it is always attractive; unlike electromagnetism, it cannot be canceled, neutralized, or shielded against. Even in our solar system, gravity is a weak force by relativistic standards matter velocities are everywhere less than the speed of light by a factor of 10-3. The crucial effects that mark the difference between Newtonian theory and general relativistic gravity and between general relativity and alternative relativity theories are therefore very small in our solar system. Nevertheless, there are times and places in the universe where gravity is strong, such as in neutron stars, black holes, and the big bang. Even the universe itself is a highly relativistic system in that recession velocities approach the speed of light for the most distant known objects. The General Theory of Relativity, as a fundamental theory of physical interactions, contains three major kinds of purely gravitational elementary objects: gravitational waves, black holes, and isolated universes. The simplest universe is the flat, empty universe of Min- kowski space-time. Other simple universes are the homogeneous, isotropic cosmological models, which are good models for our uni- verse. These elementary objects can be combined in various ways: Gravitational waves can propagate, either on a flat background or in a universe. Black holes can also inhabit either. Black holes can be formed by the implosion of sufficiently intense pulses of gravitational waves, as well as by the gravitational collapse of matter. When black holes collide, they coalesce to form a larger black hole, and some gravitational waves are radiated. When the effects of quantum mechanics are included, new processes appear. Black holes decay by quantum emission of particles and eventually disappear (Hawking radiation). Universes can in principle tunnel into one another by quantum-mechanical barrier penetration. Quantum effects are important for the structure of a big-bang singular- ity.

Next: 8. Gravitational Theory: Highlights »
Gravitation, Cosmology, and Cosmic-Ray Physics Get This Book
×
 Gravitation, Cosmology, and Cosmic-Ray Physics
Buy Paperback | $55.00
MyNAP members save 10% online.
Login or Register to save!
Download Free PDF

READ FREE ONLINE

  1. ×

    Welcome to OpenBook!

    You're looking at OpenBook, NAP.edu's online reading room since 1999. Based on feedback from you, our users, we've made some improvements that make it easier than ever to read thousands of publications on our website.

    Do you want to take a quick tour of the OpenBook's features?

    No Thanks Take a Tour »
  2. ×

    Show this book's table of contents, where you can jump to any chapter by name.

    « Back Next »
  3. ×

    ...or use these buttons to go back to the previous chapter or skip to the next one.

    « Back Next »
  4. ×

    Jump up to the previous page or down to the next one. Also, you can type in a page number and press Enter to go directly to that page in the book.

    « Back Next »
  5. ×

    To search the entire text of this book, type in your search term here and press Enter.

    « Back Next »
  6. ×

    Share a link to this book page on your preferred social network or via email.

    « Back Next »
  7. ×

    View our suggested citation for this chapter.

    « Back Next »
  8. ×

    Ready to take your reading offline? Click here to buy this book in print or download it as a free PDF, if available.

    « Back Next »
Stay Connected!