National Academies Press: OpenBook
« Previous: Appendix B: Design and Anthropometric Variable Analysis
Page 219
Suggested Citation:"B-1." Transportation Research Board. 1997. Bus Operator Workstation Evaluation and Design Guidelines: Final Report. Washington, DC: The National Academies Press. doi: 10.17226/6343.
×
Page 219
Page 220
Suggested Citation:"B-1." Transportation Research Board. 1997. Bus Operator Workstation Evaluation and Design Guidelines: Final Report. Washington, DC: The National Academies Press. doi: 10.17226/6343.
×
Page 220
Page 221
Suggested Citation:"B-1." Transportation Research Board. 1997. Bus Operator Workstation Evaluation and Design Guidelines: Final Report. Washington, DC: The National Academies Press. doi: 10.17226/6343.
×
Page 221
Page 222
Suggested Citation:"B-1." Transportation Research Board. 1997. Bus Operator Workstation Evaluation and Design Guidelines: Final Report. Washington, DC: The National Academies Press. doi: 10.17226/6343.
×
Page 222
Page 223
Suggested Citation:"B-1." Transportation Research Board. 1997. Bus Operator Workstation Evaluation and Design Guidelines: Final Report. Washington, DC: The National Academies Press. doi: 10.17226/6343.
×
Page 223
Page 224
Suggested Citation:"B-1." Transportation Research Board. 1997. Bus Operator Workstation Evaluation and Design Guidelines: Final Report. Washington, DC: The National Academies Press. doi: 10.17226/6343.
×
Page 224
Page 225
Suggested Citation:"B-1." Transportation Research Board. 1997. Bus Operator Workstation Evaluation and Design Guidelines: Final Report. Washington, DC: The National Academies Press. doi: 10.17226/6343.
×
Page 225
Page 226
Suggested Citation:"B-1." Transportation Research Board. 1997. Bus Operator Workstation Evaluation and Design Guidelines: Final Report. Washington, DC: The National Academies Press. doi: 10.17226/6343.
×
Page 226
Page 227
Suggested Citation:"B-1." Transportation Research Board. 1997. Bus Operator Workstation Evaluation and Design Guidelines: Final Report. Washington, DC: The National Academies Press. doi: 10.17226/6343.
×
Page 227
Page 228
Suggested Citation:"B-1." Transportation Research Board. 1997. Bus Operator Workstation Evaluation and Design Guidelines: Final Report. Washington, DC: The National Academies Press. doi: 10.17226/6343.
×
Page 228
Page 229
Suggested Citation:"B-1." Transportation Research Board. 1997. Bus Operator Workstation Evaluation and Design Guidelines: Final Report. Washington, DC: The National Academies Press. doi: 10.17226/6343.
×
Page 229
Page 230
Suggested Citation:"B-1." Transportation Research Board. 1997. Bus Operator Workstation Evaluation and Design Guidelines: Final Report. Washington, DC: The National Academies Press. doi: 10.17226/6343.
×
Page 230
Page 231
Suggested Citation:"B-1." Transportation Research Board. 1997. Bus Operator Workstation Evaluation and Design Guidelines: Final Report. Washington, DC: The National Academies Press. doi: 10.17226/6343.
×
Page 231
Page 232
Suggested Citation:"B-1." Transportation Research Board. 1997. Bus Operator Workstation Evaluation and Design Guidelines: Final Report. Washington, DC: The National Academies Press. doi: 10.17226/6343.
×
Page 232
Page 233
Suggested Citation:"B-1." Transportation Research Board. 1997. Bus Operator Workstation Evaluation and Design Guidelines: Final Report. Washington, DC: The National Academies Press. doi: 10.17226/6343.
×
Page 233
Page 234
Suggested Citation:"B-1." Transportation Research Board. 1997. Bus Operator Workstation Evaluation and Design Guidelines: Final Report. Washington, DC: The National Academies Press. doi: 10.17226/6343.
×
Page 234
Page 235
Suggested Citation:"B-1." Transportation Research Board. 1997. Bus Operator Workstation Evaluation and Design Guidelines: Final Report. Washington, DC: The National Academies Press. doi: 10.17226/6343.
×
Page 235
Page 236
Suggested Citation:"B-1." Transportation Research Board. 1997. Bus Operator Workstation Evaluation and Design Guidelines: Final Report. Washington, DC: The National Academies Press. doi: 10.17226/6343.
×
Page 236
Page 237
Suggested Citation:"B-1." Transportation Research Board. 1997. Bus Operator Workstation Evaluation and Design Guidelines: Final Report. Washington, DC: The National Academies Press. doi: 10.17226/6343.
×
Page 237
Page 238
Suggested Citation:"B-1." Transportation Research Board. 1997. Bus Operator Workstation Evaluation and Design Guidelines: Final Report. Washington, DC: The National Academies Press. doi: 10.17226/6343.
×
Page 238
Page 239
Suggested Citation:"B-1." Transportation Research Board. 1997. Bus Operator Workstation Evaluation and Design Guidelines: Final Report. Washington, DC: The National Academies Press. doi: 10.17226/6343.
×
Page 239
Page 240
Suggested Citation:"B-1." Transportation Research Board. 1997. Bus Operator Workstation Evaluation and Design Guidelines: Final Report. Washington, DC: The National Academies Press. doi: 10.17226/6343.
×
Page 240
Page 241
Suggested Citation:"B-1." Transportation Research Board. 1997. Bus Operator Workstation Evaluation and Design Guidelines: Final Report. Washington, DC: The National Academies Press. doi: 10.17226/6343.
×
Page 241
Page 242
Suggested Citation:"B-1." Transportation Research Board. 1997. Bus Operator Workstation Evaluation and Design Guidelines: Final Report. Washington, DC: The National Academies Press. doi: 10.17226/6343.
×
Page 242
Page 243
Suggested Citation:"B-1." Transportation Research Board. 1997. Bus Operator Workstation Evaluation and Design Guidelines: Final Report. Washington, DC: The National Academies Press. doi: 10.17226/6343.
×
Page 243
Page 244
Suggested Citation:"B-1." Transportation Research Board. 1997. Bus Operator Workstation Evaluation and Design Guidelines: Final Report. Washington, DC: The National Academies Press. doi: 10.17226/6343.
×
Page 244
Page 245
Suggested Citation:"B-1." Transportation Research Board. 1997. Bus Operator Workstation Evaluation and Design Guidelines: Final Report. Washington, DC: The National Academies Press. doi: 10.17226/6343.
×
Page 245
Page 246
Suggested Citation:"B-1." Transportation Research Board. 1997. Bus Operator Workstation Evaluation and Design Guidelines: Final Report. Washington, DC: The National Academies Press. doi: 10.17226/6343.
×
Page 246
Page 247
Suggested Citation:"B-1." Transportation Research Board. 1997. Bus Operator Workstation Evaluation and Design Guidelines: Final Report. Washington, DC: The National Academies Press. doi: 10.17226/6343.
×
Page 247
Page 248
Suggested Citation:"B-1." Transportation Research Board. 1997. Bus Operator Workstation Evaluation and Design Guidelines: Final Report. Washington, DC: The National Academies Press. doi: 10.17226/6343.
×
Page 248
Page 249
Suggested Citation:"B-1." Transportation Research Board. 1997. Bus Operator Workstation Evaluation and Design Guidelines: Final Report. Washington, DC: The National Academies Press. doi: 10.17226/6343.
×
Page 249
Page 250
Suggested Citation:"B-1." Transportation Research Board. 1997. Bus Operator Workstation Evaluation and Design Guidelines: Final Report. Washington, DC: The National Academies Press. doi: 10.17226/6343.
×
Page 250
Page 251
Suggested Citation:"B-1." Transportation Research Board. 1997. Bus Operator Workstation Evaluation and Design Guidelines: Final Report. Washington, DC: The National Academies Press. doi: 10.17226/6343.
×
Page 251
Page 252
Suggested Citation:"B-1." Transportation Research Board. 1997. Bus Operator Workstation Evaluation and Design Guidelines: Final Report. Washington, DC: The National Academies Press. doi: 10.17226/6343.
×
Page 252
Page 253
Suggested Citation:"B-1." Transportation Research Board. 1997. Bus Operator Workstation Evaluation and Design Guidelines: Final Report. Washington, DC: The National Academies Press. doi: 10.17226/6343.
×
Page 253
Page 254
Suggested Citation:"B-1." Transportation Research Board. 1997. Bus Operator Workstation Evaluation and Design Guidelines: Final Report. Washington, DC: The National Academies Press. doi: 10.17226/6343.
×
Page 254
Page 255
Suggested Citation:"B-1." Transportation Research Board. 1997. Bus Operator Workstation Evaluation and Design Guidelines: Final Report. Washington, DC: The National Academies Press. doi: 10.17226/6343.
×
Page 255
Page 256
Suggested Citation:"B-1." Transportation Research Board. 1997. Bus Operator Workstation Evaluation and Design Guidelines: Final Report. Washington, DC: The National Academies Press. doi: 10.17226/6343.
×
Page 256
Page 257
Suggested Citation:"B-1." Transportation Research Board. 1997. Bus Operator Workstation Evaluation and Design Guidelines: Final Report. Washington, DC: The National Academies Press. doi: 10.17226/6343.
×
Page 257
Page 258
Suggested Citation:"B-1." Transportation Research Board. 1997. Bus Operator Workstation Evaluation and Design Guidelines: Final Report. Washington, DC: The National Academies Press. doi: 10.17226/6343.
×
Page 258
Page 259
Suggested Citation:"B-1." Transportation Research Board. 1997. Bus Operator Workstation Evaluation and Design Guidelines: Final Report. Washington, DC: The National Academies Press. doi: 10.17226/6343.
×
Page 259
Page 260
Suggested Citation:"B-1." Transportation Research Board. 1997. Bus Operator Workstation Evaluation and Design Guidelines: Final Report. Washington, DC: The National Academies Press. doi: 10.17226/6343.
×
Page 260
Page 261
Suggested Citation:"B-1." Transportation Research Board. 1997. Bus Operator Workstation Evaluation and Design Guidelines: Final Report. Washington, DC: The National Academies Press. doi: 10.17226/6343.
×
Page 261
Page 262
Suggested Citation:"B-1." Transportation Research Board. 1997. Bus Operator Workstation Evaluation and Design Guidelines: Final Report. Washington, DC: The National Academies Press. doi: 10.17226/6343.
×
Page 262
Page 263
Suggested Citation:"B-1." Transportation Research Board. 1997. Bus Operator Workstation Evaluation and Design Guidelines: Final Report. Washington, DC: The National Academies Press. doi: 10.17226/6343.
×
Page 263
Page 264
Suggested Citation:"B-1." Transportation Research Board. 1997. Bus Operator Workstation Evaluation and Design Guidelines: Final Report. Washington, DC: The National Academies Press. doi: 10.17226/6343.
×
Page 264
Page 265
Suggested Citation:"B-1." Transportation Research Board. 1997. Bus Operator Workstation Evaluation and Design Guidelines: Final Report. Washington, DC: The National Academies Press. doi: 10.17226/6343.
×
Page 265
Page 266
Suggested Citation:"B-1." Transportation Research Board. 1997. Bus Operator Workstation Evaluation and Design Guidelines: Final Report. Washington, DC: The National Academies Press. doi: 10.17226/6343.
×
Page 266
Page 267
Suggested Citation:"B-1." Transportation Research Board. 1997. Bus Operator Workstation Evaluation and Design Guidelines: Final Report. Washington, DC: The National Academies Press. doi: 10.17226/6343.
×
Page 267
Page 268
Suggested Citation:"B-1." Transportation Research Board. 1997. Bus Operator Workstation Evaluation and Design Guidelines: Final Report. Washington, DC: The National Academies Press. doi: 10.17226/6343.
×
Page 268
Page 269
Suggested Citation:"B-1." Transportation Research Board. 1997. Bus Operator Workstation Evaluation and Design Guidelines: Final Report. Washington, DC: The National Academies Press. doi: 10.17226/6343.
×
Page 269
Page 270
Suggested Citation:"B-1." Transportation Research Board. 1997. Bus Operator Workstation Evaluation and Design Guidelines: Final Report. Washington, DC: The National Academies Press. doi: 10.17226/6343.
×
Page 270
Page 271
Suggested Citation:"B-1." Transportation Research Board. 1997. Bus Operator Workstation Evaluation and Design Guidelines: Final Report. Washington, DC: The National Academies Press. doi: 10.17226/6343.
×
Page 271
Page 272
Suggested Citation:"B-1." Transportation Research Board. 1997. Bus Operator Workstation Evaluation and Design Guidelines: Final Report. Washington, DC: The National Academies Press. doi: 10.17226/6343.
×
Page 272
Page 273
Suggested Citation:"B-1." Transportation Research Board. 1997. Bus Operator Workstation Evaluation and Design Guidelines: Final Report. Washington, DC: The National Academies Press. doi: 10.17226/6343.
×
Page 273
Page 274
Suggested Citation:"B-1." Transportation Research Board. 1997. Bus Operator Workstation Evaluation and Design Guidelines: Final Report. Washington, DC: The National Academies Press. doi: 10.17226/6343.
×
Page 274
Page 275
Suggested Citation:"B-1." Transportation Research Board. 1997. Bus Operator Workstation Evaluation and Design Guidelines: Final Report. Washington, DC: The National Academies Press. doi: 10.17226/6343.
×
Page 275
Page 276
Suggested Citation:"B-1." Transportation Research Board. 1997. Bus Operator Workstation Evaluation and Design Guidelines: Final Report. Washington, DC: The National Academies Press. doi: 10.17226/6343.
×
Page 276
Page 277
Suggested Citation:"B-1." Transportation Research Board. 1997. Bus Operator Workstation Evaluation and Design Guidelines: Final Report. Washington, DC: The National Academies Press. doi: 10.17226/6343.
×
Page 277
Page 278
Suggested Citation:"B-1." Transportation Research Board. 1997. Bus Operator Workstation Evaluation and Design Guidelines: Final Report. Washington, DC: The National Academies Press. doi: 10.17226/6343.
×
Page 278

Below is the uncorrected machine-read text of this chapter, intended to provide our own search engines and external engines with highly rich, chapter-representative searchable text of each book. Because it is UNCORRECTED material, please consider the following text as a useful but insufficient proxy for the authoritative book pages.

B.1 Classification of Bus Operator Workstation Design Variables Number of design variables defined: 242 Number of design guidelines provided: 46 Notation: 1. Classification of related methodological characteristics - Ergonomic design variable (ED) : related to ergonomic characteristics - Mechanical design variable (MD): related to mechanical characteristics - Aesthetic design variable (AD) 2. Classification of cause and effect relationship - Simple design variable (P) - Master design variable (M) Slave design variable (S) - Complex design variable (C) . related to preference or aesthetics little influence, little dependence large influence, little dependence little influence, large dependence . large influence, large dependence Nomenclature of Bus Operator Workstation Design Variables: Abbreviation Description APRP Accelerator Pedal Reference Point 3PRP Brake Pedal Reference Point SIR Ratio Control-Response Ratio FRP Farebox Reference Point NICIRP _ · · _ · _ · · NIDEP Neutral Design Eye Point SILIRP Neutral Left Instrument Panel Reference Point LSCMRP Neutral Left Side Convex Mirror Reference Point ~LSFMRP Neutral Left Side Flat Mirror Reference Point sIPMCMRP Neutral Passenger Monitor Convex Mirror Reference Point RIRP Neutral Right Instrument Panel Reference Point RSCMRP Neutral Right Side Convex Mirror Reference Point JRSFMRP Neutral Right Side Flat Mirror Reference Point JRVMRP Neutral Rear View Mirror Reference Point MSRP Neutral Seat Reference Point SWAP Neutral Steering Wheel Reference Point 'LRP Personal Locker Reference Point BRP Seat Belt Reference Point N0 _ _ B - 1

B.1 Classification of Bus Operator Workstation Design Variables with respect to Related Methodological Characteristics and Cause/Effect Relationship (continued) Design Variables 1st Level 2nd Level Seat (S) . 3rd Level . headrest (H) seat back (B) seat pan (P) seat belt (L) 4th Level length width . depth l curvature . angle . adjustment location material length widtil depth curvature angle Adjustment location material length width depth curvature angle adjustment location material length width ~- location tension material Code . SH1 SH2 SH3 SH4 SH5 SH6 SH7 SH8 SH9 SH1 0 SH11 SH12 SB1 SB2 SB3 SB4 SB5 SB6 SB7 SB8 SB9 SB1 0 SB1 1 SB12 SB13 SB14 SB15 SP1 SP2 SP3 SP4 SP5 SP6 ~SP7 SP8 jP9 SP10 SP11 SP12 SP13 SP14 SP15 SP16 SP17 SP18 SP19 SL1 SL2 SL3 SL4 SL5 SL6 SL7 headrest length headrest width headrest depth ~ Fa. . headrest vertical adjustment range . headrest vertical adjustment increment headrest vertical angle adjustment horizontal distance of NDEP from ~ I ~ a1~e DI~D-~ h~ NS headrest cover texture headrest cushion material density seat back length upper seat back width middle seat back width = upper seat back depth ~0 [~ ~r =~[ Ju~: O ~1 pper seat back curvature m~D ~ s~ ~:1 uJEVam ower seat back curvature b~= ~:< n~ w~= a~) ~ eat back angle adjustment range vertical distance of lumbar support distance from NSRP 5~= ~-r _~B eel o~ ~i ·n m~ 1~"~y seat pan length front seat pan depth middle seat pan depth rear seat pan depth m~u ~ 0~ ~] = rear seat pan curvature seat pan neutral horizontal angle seat pan angle adjustment range ~ ~_~ - ~t ~e seat upward adjustment range seat downward adjustment range vertical distance of NSRP from WO seat pan cover texture seat pan cushion material density seat spring stiffness seat damping coefficient seat belt length seat belt width la~teral distance of SBRP from NSRP horizontal distance of SBRP from NSRP vertical distance of SBRP from NSRP seat belt tension seat belt texture B - 2 Methodological Characteristics

B.1 Classification of Bus Operator Workstation Design Variables with respect to Related Methoclological Characteristics and Cause/Effect Relationship (continuecl) 1st Level Steering (T) Pedals (P) 2nd Level brake pedal (B) accelerator pedal (A) 3rd Level steering wheel (I spokes (S) pedal plate pedal arm pedal mounting base pedal plate Design Variables 4th Level diameter shape angle adjustment location resistance CR ratio material width thickness angle material length width thickness shape angle location material length width thickness shape material length width thickness angle resistance location material length width thickness shape angle location wheel diameter grip diameter wheel shape grip shape wheel plane neutral horizontal angle wheel column neutral vertical angle wheel telescope adjustment range wheel plane horizontal angle adjustment range wheel column vertical angle adjustment range horizontal distance of NSWRP from NSRP vertical distance of NSWRP from NSRP steering wheel resistance force steering wheel CR ratio steering wheel material spoke width spoke thickness spoke angle relative to wheel plane spoke orientation angle steering wheel spoke material brake pedal plate length brake pedal plate width brake pedal plate thickness brake pedal plate shape brake pedal plate lateral angle brake pedal plate horizontal angle brake pedal plate pivot angle range lateral distance of BPRP from NSRP horizontal distance of BPRP from NSRP vertical distance of BPRP from WO brake pedal plate material brake pedal arm length brake pedal arm width brake pedal arm thickness brake pedal arm shape brake pedal arm material ~ - brake pedal mounting base length brake pedal mounting base width brake pedal mounting base thickness brake pedal actuation angle brake pedal actuation force brake pedal recovery force brake pedal mounting base location brake pedal mounting base material accelerator pedal plate length accelerator pedal plate width accelerator pedal plate thickness accelerator pedal plate shape accelerator pedal plate lateral angle accelerator pedal plate horizontal accelerator pedal plate pivot angle lateral distance of APRP from NSRP Code TW] TW2 TW3 TW4 TW5 TWO TW7 TWO TWO TW10 TW11 TW12 TW13 TW14 TS1 TS2 TS3 TS4 TS5 PB1 PB2 PB3 PB4 PB5 PB6 PB7 PB8 PB9 PB10 PB11 PB12 PB13 PB14 PB15 PB16 PB17 PB18 PB19 PB20 PB21 PB22 PB23 PB24 PA1 PA2 PA3 PA4 PA5 PA6 PAT PA8 Methodological Charactenstics

B.1 Classification of Bus Operator Workstation Design Variables with respect to Related Methocdological Characteristics and Cause/Effect Relationship (continuecl) Design Variables Code 1st Level 2nd Level 3rd Level 4th Level 5th Level . horizontal distance of APRP from Pedals accelerator pedal plate location NSRP PA9 (P) pedal ~ ~ . ~ u~ o F Arm Ace: t, PA1 0 (A) material accelerator pedal plate material PA11 pedal arm length accelerator pedal arm length PA12 width accelerator pedal arm width PA13 thickness accelerator pedal arm thickness PA14 shape accelerator pedal arm shape PA] 5 material a: anew q~a am ~r ~PA16 pedal length accelerator pedal mounting base PA17 mounting width accelerator pedal mounting base PA18 base thickness ~ ~m u~a ~ ~] ~e gPA19 angle A= PA20 resistance acc~ -ream ~a a~ai oa 3 ~PA21 = PA22 location a;= ·~: ·~a ~ ~g base PA23 material ~= ·~ ·~a ~ ~; Oase PA24 Instrument left length left instrument panel length IL1 Panels instrument width ~ news ~ ~ ~ dm IL2 (I) panel thickness ~ left instrument panel thickness IL3 (L) curvature left instrument panel curvature IL4 angle left instrument panel horizontal angle IL5 adjustment lefl instrument panel horizontal IL6 left instrument panel vertical IL7 location ~m, ~ u~ af NU Rp ~m ~IL8 nJE~ ~ ·~-~ m N RP ~IL9 ~ ~ ~= ~: RP ~ ~? IL10 material ~IL11 ~ nS~ ~ ~ ~ si IL12 central length ICI instrument width central instrument panelwidth ~ IC2 panel thickness central instrument panel thickness IC3 (C) curvature ~ ~:l ~ pane :. IC4 angle ~ Am--p a~ w~ :a ~1 ] ~ IC5 hu ~ ~ . 5~ cd ARC ~ham location N~H IC6 wow I s~B ZINC :? ~m N0~ ~ IC7 material worn ~ m~a IC8 central instrument panel surface finish IC9 right length right instrument panel length IR1 instrument width right instrument panel width ~ IR2 panel thickness right instrument panel thickness IR3 (R) curvature right instrument panel curvature jR4 angle right instrument panel horizontal angle IR5 adjustment right instrument panel horizontal IR6 adjustment range left instrument panel length left instrument Danel width B - 4 Methodological Charactenstics

B.1 Classification of Bus Operator Workstation Design Variables with respect to Related Methodological Characteristics and CauseJEffect Relationship (continuecl) 1st Level Instrument Panels (1) Mirrors (M) instrument panel left side flat mirror An) left side convex mirror (L) rear view mirror (V) right side flat mirror (R) Design Variables 4th Level adjustment location material length width angle adjustment location material length width curvature angle location material length width angle adjustment location l material length width angle adjustment 5th Level right instrument panel vertical adjustment range lateral distance of NRIRP from NSRP horizontal distance of NRIRP from NSRP vertical distance of NRIRP from NSRF right Instrument panel material right instrument panel surface finish left side flat mirror length left side flat mirror width left side flat mirror lateral angle left side flat mirror vertical angle left side flat mirror lateral angle adjustment range left side flat mirror vertical angle adjustment range lateral distance of NLSFMRP from NDEP horizontal distance of NLSFMRP from NDEP vertical distance of NLSFMRP from NDEP left side flat mirror reflectance left side convex mirror length left side convex mirror width left side convex mirror curvature left side convex mirror lateral angle left side convex mirror vertical angle lateral distance of NLSCMRP from NDEP horizontal distance of NLSCMRP from NDEP vertical distance of NLSCMRP from NDEP left side convex mirror reflectance rear view mirror length rear view mirror width rear view mirror lateral angle rear view mirror vertical angle rear view mirror lateral angle adjustment range rear view mirror vertical angle adjustment range lateral distance of NRVMRP from NDEP horizontal distance of NRVMRP from NDEP vertical distance of NRVMRP from NDEP rear view mirror reflectance right side mirror length right side mirror width right side flat mirror lateral angle right side flat mirror vertical angle right side flat mirror lateral angle adjustment range right side flat mirror vertical angle adjustment range B - 5 Code IR7 IR8 IR9 IR10 IR11 IR12 ML1 ML2 ML3 ML4 ML5 ML6 ML7 ML8 ML9 ML1 0 ML1 1 ML1 2 ML1 3 ML1 4 ML1 5 ML16 ML1 7 ML1 8 ML1 9 MV1 MV2 MV3 MV4 MV5 MV6 MV7 MV8 MV9 MV10 MR1 MR2 MR3 MR4 MR5 MR6 Methodological Charactenstics

B.1 Classification of Bus Operator Workstation Design Variables with respect to Related Methodological Characteristics and Cause/Effect Relationship (continued) 1st Level Mirrors (M) Windshield (I Farebox (FA) Peripheral Workspace (E) 2nd Level right side flat mirror (R) right side convex mirror (R) passenger monitor convex mirror (P) windshield (I pillar (P) personal locker (P) 4th Level location material length width curvature angle ocat' tn material length width curvature angle location material length width curvature angle location material length width thickness length width depth location length width Depth lateral distance of NRSFMRP from NDEP horizontal distance of NRSFMRP from NDEP vertical distance of NRSFMRP from NDEP right side flat mirror reflectance right side convex mirror length right side convex mirror width right side convex mirror curvature right side convex mirror lateral angle right side convex mirror vertical angle lateral distance of NRSCMRP from NDEP horizontal distance of NRSCMRP from NDEP vertical distance of NRSCMRP from NDEP right side convex mirror reflectance passenger monitor convex mirror length passenger monitor convex mirror width passenger monitor convex mirror curvature passenger monitor convex mirror lateral angle passenger monitor convex mirror vertical angle lateral distance of NPMCMRP from NDEP horizontal distance of NPMCMRP from NDEP vertical distance of NPMCMRP from NDEP passenger monitor convex mirror reflectance windshield length windshield width windshield curvature windshield vertical angle windshield lower side height from WO windshield glare reflectance pillar length pillar width pillar thickness farebox length farebox width farebox depth lateral distance of FRP from NSRP- horizontal distance of FRP from NSRP vertical distance of FRP from NSRP personal locker length personal locker width personal locker depth B - 6 Code MR7 MR8 MR9 MR1 0 MR1 1 MR1 2 MR1 3 MR1 4 MR1 5 MR1 6 MR1 7 MR1 8 MR1 9 MP1 MP2 MP3 MP4 MP5 MP6 MP7 MP8 MP9 WW1 WW2 WW3 WW4 WW5 WW6 WP1 WP2 WP3 FB1 FB2 FB3 FB4 FB5 FB6 EP1 EP2 EP3 l Methodological Characteristics

B.1 CIassification of Bus Operator Workstation Design Variables with respect to Related Methodological Characteristics and Cause/Effect Relationship (continuecl) -_ C o d e M e t h o d o l o g i c a l C h a r a c t e r i s t i c s C a u s e / E ff e c t D e s i g n 1st Level 2nd Level 3rd Level 4th Level 5th Level Relationship Guideline Peripheral personal location lateral distance of PLRP from NSRP EP4 horizontal distance of PLRP from Workspace locker NSRP EP5 x s (E) (P) lock location EP6 x modesty length modesty panel length EM1 x panel width modesty panel width EM2 x (M) thickness modesty panel thickness EM3 x location |h~rizontaldistanceof the f'~nt face of| EM4 | I I x I s modesty panel from NSRP material modesty panel translucence EM5 x cold blast length cold blast protector length EC1 x P protector width old blast protector width EC2 x (C) thickness cold blast protector thickness EC3 x era dis ance of he ef f ce of co d EC4 |location |b ast protector from N;RP l l l l wastebasket length wastebasket length EW1 x P (W) width wastebasket width EW2 _ x . depth wastebasket depth EW3 x B - 7

u) .m ~r 'v=i ) ~: · - u, o · - e~ c) et s~ ~ o - d~SN wo~] d2: 1UN Jo aouels!p leo!ya d~SN mOJI d~l~N I° aoUelS!P lelU°Z!J d~SN mOJ} dUl~N lo aoue~s!p le~a~e dElSN woJ} dUlON lo aouels!p leo!ya dUSN m°~} d~llN Jo aoue~s!p leo!ya dUSN m°~} dUllN I° aoUelS!P leluoz!3o dUSN mOJI dUllN lo aouels!p le~ale OM m°~} dUd9 lo aouels!p 1eo!yaA dUSN mOJ] dUdS I° acUelS!P leluoz!Jo d~SN m°~] dUdS lo aouels!p leJale d~SN mOJI dUMSN lo acue~s!p leo!yaA d~SN woJI d2dMSN lO aoUelS!P lelU°Z!~° Ja~awe!p laa4~ OM mOJ} d~SN lo acuels!p leo!yaA abueJ ~uawlsntpe pJeMUMOp 1eas abueJ ~uawlsnEpe pJeMdn 1eas abueJ 1uaw~sntpe pJeM~oeq 1eas abueJ ~uawlsnEpe pJeMJO} 1eas abueJ ~uaw~sntpe alOue ued ~eas alOue 1e~uoz!Jo4 1eJlnau ued 1eas abue~ 1uawisnEpe alOue >1oeq 1eas alOue 1eo!yaA le~lnau ~oeq ~eas d~SN mOJI dBaN lo aouels!p leo!yaA (~oau3)alqeueA u6!saa a~els 7 Ja;Sew a: 1 m

. aCue~ al6ue 1oA!d aleld lepad a~eJq alCue 1e~uoz!Jo4 aleld 1epad a>leJc alOue uo!lelua!~o a~ods aDueJ lusw~sntpe alCue 1ec!yaA umnloo laa4N a6ueJ ~uaw~sntpe alOue 1eluoz!Jo4 aueld 1aa4N abueJ 1uawlsntpe adoosala1 1aa4N alOue ieo!yaA leJlnau umnloo laa4N alOue 1eluoz!Jo4 1eJlnau aueld laa4At dEJSN woJI d3ON lo aoUels!P lelU°Z!J°4 alOue 1ec!yaA 1saJpea4 . dElSN m°JI dUd lo acuels~p ~e~a~e . dBON mOJI d~W0WdN lo aouels!p leo!ya, . dBON mOJ'd~W0WdN lo aouelsl.p leJale dBON mOJ] d~WDSUN Jo aouels!p leo!ya, dBON mOJI d~WDS~N lo aouels!p leJale . dBON woe] d~WdS~N 10 aouels!p 1eo!ya' dBON mOJ] d~WdS~N lo aouels!p leJalel . dBON mOJI d~WAUN lo acuels!p leo!ya, . dBON mOJI d~WAHN Jo aouels!p leJalel . dBON mOJI d~WOSlN lo aouels!p leo!ya' dBON mOJI d~WOSlN lo aouels!p leJa~el dBON mOJI d~WdSlN lo aouels!p leo!ya' . . dBON mOJI d~WdSlN lo aouels!p leJa~e (~oau3)alneueA u6'san eAelS ~ JalseW

~2 .m -m ~.= o u) ~c) c ~ · - o · - cn en u, alOue 1eJalel JoJJ!m 1el~ aP!S 146! abueJ 1uawlsntpe alDue 1eo!yaA JoJJ!w MO!A Jea. abueJ ~uawlsn~pe alOue 1eJalel JoJJ!w MO!A Jea. alOue 1eo!yaA JoJJ!w MO!A Jea. alOue 1eJalel JoJJ!w Ma!A Jea. alOue 1eo!;uaA JoJJ!w xaAuoo ap!s ua alOue 1eJalel JoJJ!w xaAuoo ap!s ua aDue. awlsn~pe alOue leo!;uaA JoJJ!m 1el~ ap!s ua abue~ awlsntpe alOue leJalel JoJJ!w lel~ ap!s ~a alOue 1eo!yaA JoJJ!m 1el~ ap!s ua alOue 1eJalel JoJJ!w 1el~ ap!s ua abueJ 1uawlsntpe 1eo!yaA laued 1uawnJlsu! ga abue~ awlsnEpe leluoz!Jo4 1aued 1uawnJlsu! ua alOue 1eluoz!Jo4 1aued 1uawnJlsu! ga dUSN mOJI dUlON Jo aouels!p leluoz!Jo alOue 1eo!yaA laued 1uawn~lsu! ieJluao abueJ 1uawlsn.[pe leo!yaA laued luawnJIsu! 146! abue uswlsntpe leluoz!Jo4 1aued 1U9WnJlSU! 146! alOue 1eluoz!J04 1aued luawndlsu! 146!J alOue uo!lenloe 1epad JoleJalacce aDueJ alOue 1oA!d aleld lepad JoleJalaooe alOue 1eluoz!Jo4 aleld 1epad JoleJalaooe alOue uo!lenloe 1epad a~e~q (;oau3)alqeueA u6!saa a~els 7 ·a~Sew N .

c~ o · - u' ·= =O ~.m o ~ · - ~ ~s .= c) en O o - :d wnS asne~ dElSN WOJ] dUld lO aoUelS!P lelU°Z!J°t dElSN wo34 dUld lO 3ouels!p 1e~a~e dUSN wo~} dUd lo aouels!p leo!ya' d~SN WOJ] dUd lO acuels!p leluoz!Joc OM WOJ] 146!04 Op!S J0MOi plO!4SpU!N alCue 1eo!yaA JoJJ!w xaAuoo J°l!UOW JaDuassec alOue 1eJalel ~oJJ!w xaAuoo ~ol!uow Jabuassed alOue 1eo!yaA JoJJ!w xaAuoo aP!S 146!3 alOue 1eJalel ~oJJ!w xaAuo~ aP!S 146!J abueJ uawlsntpe alOue leo!yaA Jo3J!W 1el} aP!s 146!J abue~ 1U0wlsntpe alCue leJalel JoJJ!W 1el] aP!S 146!3 alOue 1eo!yaA JoJ1!w 1ell aP!S 146!J (;oau3)alqeueA u6!saa aAels 7 ·a~sew . ~ _ dUSN W°J] lOUed ~ aouels!p leluoz~Jo~ _ 1 ~ 1 113 ~r CL m 1: . 11 1 1 ~ W::R ~ :1 . a L_ _ - ~ _ ~ It) N ~ _ _ _ _ ~ N _ _ _ _ I T l l . . -1-1-1 1 1 ~1-1~1 1 I rl I Illllr -0 m m c 0 c <~l|=l~ll`) ~ ~0 ~-~= |~ . ~L,, 1~1~ j~ _ a) a) G) a) a) a) a) ~ a) ~ 3 0 e, a~ 0 ~ Z _ N c<\ _ _ _ _ _ _ O _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

B.3 Relative :Influence of Master Design Variables (l of 2) No 3 Master Design Variable -vertical distance of NDEP from NSRP 2 SH10 SB11 seat back neutral vertical angle seat back angle adjustment range seat pan neutral horizontal angle seat pan angle adjustment range seat forward adjustment range seat backward adjustment range . seat upward adjustment range seat downward adjustment range . SB1 2 SP9 SP1 0 SP1 1 SP12 SP1 3 SP14 SP15 TW1 1W10 Cause_SUM Relative Influence (I/nit: %} 73 1 8 o i 56 14.32 19 4.86 22 5.63 5 1.28 15 3.84 18 4.60 20 5.12 20 ~ 0.26 7 1.79 10 2.56 11 2.81 0.26 24 6.14 13 3.32 3 0.77 1 .53 1 .79 8 2.05 0.26 1.28 6 1 .53 1 .02 4 1.02 0.77 3 0.77 0.77 3 0.77 1 .02 4 1.02 3 0.77 3 0.77 0.51 2 0.51 2 0.51 391 1 00.00 4 5 6 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 - 28 29 30 31 32 33 34 35 36 vertical distance of NSRP from WO ~- wheel diameter _ horizontal distance of NSWRP from NSRP _ _ vertical distance of NSWRP from NSRP _ lateral distance of BPRP from NSRP _ horizontal distance of BPRP from NSRP _ vertical distance of BPRP from WO _ lateral distance of NLIRP from NSRP _ horizontal distance of NLIRP from NSRP vertical distance of NLIRP from NSRP vertical distance of NCIRP from NSRP _ lateral distance of NRIRP from NSRP horizontal distance of NRIRP from NSRP vertical distance of NRIRP from NSRP lateral distance of NLSFMRP from NDEP vertical distance of NLSFMRP from NDEP lateral distance of NLSCMRP from NDEP vertical distance of NLSCMRP from NDEP lateral distance of NRVMRP from NDEP vertical distance of NRVMRP from NDEP lateral distance of NRSFMRP from NDEP vertical distance of NRSFMRP from NDEP lateral distance of NRSCMRP from NDEP vertical distance of NRSCMRP from NDEP- lateral distance of NPMCMRP from NDEP vertical distance of NPMCMRP from NDEP lateral distance of FRP from NSRP TW11 PB8 PB9 PB10 IL8 IL9 IL10 IC7 IR8 IR9 IR10 ML7 ML9 ML1 6 ML18 MV7 MV9 MR7 MR9 MR16 MR18 MP6 MP8 FB4 Total B- 12

B.3 Relative Influence of Master Design Variables (2 of 2) - Sortec] by Relative Influence No Master Design Variable Cause_SUM Relative Influence ~(Unit: %) _ 1 _ vertical distance of NDEP from NSRP SH10 73 18.67 2 seat back neutral vertical angle SB11 56 14.32 3 horizontal distance of BPRP from NSRP PB9 24 6.14 4 seat pan neutral horizontal angle SP9 22 5.63 5 seat upward adjustment range SP13 20 5.12 6 seat downward adjustment range SP14 20 5. 12 7 seat back angle adjustment range SB12 19 4.86 8 seat backward adjustment range SP12 18 4.60 9 seat forward adjustment range SP11 15 3.84 10 vertical distance of BPRP from WO PB10 13 3.32 11 vertical distance of NSWRP from NSRP TW11 11 2.81 12 horizontal distance of NSWRP from NSRP TW10 10 2.56 13 ~vertic 31 distance of NCIRP from NSRP ~ IC7 ~3 ~2.05 14 Iwhee diameter I TWO IL 7 1 1.79 0 15 vertical distance of NLIRP from NSRP IL10 7 1.79 16 |horiz~ ntal distance of NLIRP from NSRP | i~9 || 6 | 1.53 17 vertical distance of NRIRP from NSRP IR10 6 1.53 18 seat pan angle adjustment range SP10 5 1.28 19 |horiz~ ntal distance of NRIRP from NSRP | IR9 || 5 | 1.28 20 |1aterz distance of NLSFMRP from NDEP | M~7 || 4 | 1.02 21 vertical distance of NLSFMRP from NDEP ML9 4 1.02 22 _ ~MR7 4 1 .02 23 7vertic~1 distance of NRSFMRPfrom NDEP ~MR9 || 4 | 1.02 24 lateral distance of NLIRP from NSRP IL8 3 0.77 25 ~ ~ ~ ~ ~ ~ ~ ' ~ ~ U ~ML16 3 0.77 26 ML18 3 0.77 27 ~ ~ ~ ^ o - v'~ - MV7 3 0.77 28 v~ ~MV9 3 0.77 29 lateral ~P MR16 3 0.77 30 vertical dis ~MR18 3 0.77 31 |1aterz distance of NPMCMRP from NDEP | MP6 || 2 | 0.51 32 Ivertic ~I distance of NPMCMRP from NDEP | MP8 || 2 ~ 0.51 33 lateral distan ~FB4 2 0.51 34 vertical dista ~SP15 1 0.26 35 |1aterE distance of BPRP from NSRP | PBS || 1 | 0.26 36 ~ ~·~''~P IR8 1 0.26 _ ~ Total 11 391 1 100.00 1 B- 13

B.4 Relative Dependence of Slave Design Variables (! of 2 No ~ headrest vertical angle I SH5 2 horizontal distance of NDEP from NSRP l SH9 3 wheel plane neutral horizontal angle | TW5 4 wheel column neutral vertical angle TWO 5 wheel telescope adjustment range TW7 6 wheel plane horizontal angle adjustment range TWO 7 wheel column vertical angle adjustment range TWO 8 spoke orientation angle TS4 _ brake pedal plate horizontal angle PB6 10 brake pedal plate pivot angle range PB7 ~ ~ brake pedal actuation angle PB20 12 accelerator pedal plate horizontal angle PA6 13 accelerator pedal plate pivot angle range PA7 14 accelerator pedal actuation angle PA20 15 right instrument panel horizontal angle IR5 16 right instrument panel horizontal adjustment range IRE Ji right instrument panel vertical adjustment range IR7 18 central instrument panel vertical angle IC5 19 horizontal distance of NCIRP from NSRP IC6 20 left instrument panel horizontal angle IL5 21 left instrument panel horizontal adjustment range IL6 22 left instrument panel vertical adjustment range IL7 23 left side flat mirror lateral angle ~ML3 24 left side flat mirror vertical angle ~ML4 25 left side flat mirror lateral angle adjustment range ML5 26 left side flat mirror vertical angle adjustment range ML6 27 left side convex mirror lateral angle ML14 28 left side convex mirror vertical angle ML] 5 29 rear view mirror lateral angle MV3 30 rear view mirror vertical angle MV4 31 rear view mirror lateral angle adjustment range MV5 32 rear view mirror vertical angle adjustment range MV6 33 right side flat mirror lateral angle MR3 34 right side flat mirror vertical angle MR4 35 right side flat mirror lateral angle adjustment range MR5 36 right side flat mirror vertical angle adjustment range MR6 37 ight side convex mirror lateral angle MR14 38 right side convex mirror vertical angle MR15 39 passenger monitor convex mirror lateral angle MP4 40 passenger monitor convex mirror vertical angle MP5 41 windshield lower side height from WO ~WV5 42 horizontal distance of FRP from NSRP FB5 43 vertical distance of FRP from NSRP FB6 44 lateral distance of PLRP from NSRP EP4 45 horizontal distance of PLRP from NSRP EP5 46 horizontal distance of the front face of modesty pane! from NSRP EM4 ~ _ Total Slave Design Variable B- 14 Effect_SUM Relative Dependence (Unit: °/0)

4 Relative Dependence of Slave Design Variables (2 of 2) - Sorted by Relative Dependence No | Slave Design Variable 1 windshield lower side height from WO V\NV5 2 wheel plane horizontal angle adjustment range TWO 3 wheel plane neutral horizontal angle TW5 4 ~ ~ · ~ ~ ~ ~ 5 wheel column vertical angle adjustment range TW9 6 brake pedal plate pivot angle range PB7 7 accelerator pedal plate pivot angle range PA7 8 ~ ~ ~ ~ ~ ~ ~IR7 wheel column neutral vertical angle TWO O right instrument panel horizontal adjustment range IR6 11 left instrument panel horizontal adjustment range IL6 . 12 left instrument panel vertical adjustment range IL7 . 13 brake pedal actuation angle PB20 14 horizontal distance of NCIRP from NSRP IC6 . . 15 left side flat mirror lateral angle adjustment range ML5 16 left side flat mirror vertical angle adjustment range ML6 17 ~ · ~ - ~MV5 18 ~ ~ O ~ ~MV6 19 right side flat mirror lateral angle adjustment range MR5 20 ~ ~ ~ ~ ~ ~ ~ ·~ ~ _ · ~E MR6 21 ~ ~ ~ ~ ~ !~ ~ ~IC5 22 brake pedal plate horizontal angle PB6 23 accelerator pedal plate horizontal angle PA6 24 accelerator pedal actuation angle PA20 25 right instrument panel horizontal angle IR5 26 left instrument panel horizontal angle IL5 27 left side flat mirror lateral angle ML3 28 left side flat mirror vertical angle ML4 29 left side convex mirror lateral angle ML14 30 left side convex mirror vertical angle ML15 31 rear view mirror lateral angle MV3 32 ~ ~ = ~ ? MV4 33 ~ ~ ~ ~ ~ ~ MR3 34 ~ ~ ~ ~ ~ ~ MR4 35 MR14 36 right side convex mirror vertical angle MR15 37 P== ~ ~ ~ MP4 38 ~ ~ - · · ~- ~ ·~e MP5 ~ 39 spoke orientation angle TS4 40 horizontal distance of FRP from NSRP FB5 41 vertical distance of FRP from NSRP FB6 42 horizontal distance of PLRP from NSRP EP5 43 horizontal distance of NDEP from NSRP SH9 44 horizontal distance of the front face of modesty panel from NSRP EM4 45 headrest vertical angle SH5 46 ~ _ EP4 ~ ~- Total Slave Design \lariable Relative Dependence (Unit: °/0)

H~ Wag BEAN ~ ~U-1D 1~8 ~ wag dada ~ ~U=1~~ BEEN Wag H~8 ~ Sunup 1~U=U~ d~SN wag dada ~ Cutup lame BORN Won HEN ~ ~u~lM~~ WOjl HUMAN 10 GOUBlSIp lElUOZVOL MID Beaus Wag CLAN ~ ~u-Ip lawn Drum ~-sn~e gerund gag ~ ~- In agues 1u~wlsn~e Dje~oec leas aGuej ~uaw$sn~e pleat leas ~_^~ alOue leluozuou menu usd lea, ~ ^ alOue Midas landau goes legs ddSN wag dSON ~ Course 1 -~^ US

o u, · - u, e~ ~: & · - u, s: · - o e~ - ~ o - u, ~.g - 0 ~ - - - dBaN wo~] d8W0WdN jo a~uels!p leJale . dSaN woe] d8WOS~N lo aouels!p le3!ya . dBON WOJ] d~WOSHN ~o aouels!p leJale . d3CN WOJI d8W3SHN lo a~uels!p le3!ya dBaN WOJI d8WdS8N lo a~uels!p leJale . dEaN W°J} d8WAUN lo a~uels!p lec!ya dBON W°JI d~WAUN lo aouels!p leJale dBaN WOJ] d8WOSlN lo a~uels!p lec!ya' , _ {D dEaN W°J} d8WOSlN jo a~uels!p leJale I- _ a dBaN W°~ d8WdSlN lo a~uels!p leo!ya I- _ _ o Q: _ a 1 ~ 0 J A 1 _ dEaN WOJ] d~WdSlN Jo a~uels!p leJalE dUSN woe] dBl~N lo a~uels!p leo!ya' d~SN woe] dBl~N lo a~uels!p leluozuo d8SN woJI dBl~N lo 90UelS!P leJal d~SN woJI dUlON lo a~uels!p leo!ya' d8SN woJI dUllN lo a~uels!p leo!ya d~SN woJI dBllN lo a~uels!p leluozuo alqe!JeA U6!S80 aAelS 7 JOlSeW C D C) - .C a' C O o - .; . ~ CL - - - C) CJ . _

c~ o c~ · - c~ & · - u, o · - ct - c) o ~ - - u) L alOue uo!lenloe 1epad axe~c abue~ alCue 1oA!d aleld lepad a~eJq u, _ ,Q alOue 1eluozuo4 aleld 1epad a)le~c m ~alOue uo!leluouo a)lods co aCue~ 1uawisnrpe albue 1eo!yaA umnioo laa4N ~ abue~ 1uawisn~pe albue leluo2uo4 aueld 1aa4N _ aCue~ 1uawisntpe adoosa~al 1aeu- ~ alOue 1eo!yaA le~lnau umnloo laa4N _ alCue leluozuo4 le~lnau aueld 1aeu d8SN wo~] dBaN lo aouels!p leluozuoL a, _ albue 1eo!yaA lsaJpeac _ d8SN wOJI d~d ~o acuels!p leJale dBON woJI d~W0WdN lo aouels!p leo!ya Q E alCue 1eluozuo4 1aued 1uswn~lsu! 196 . alCue uo!lenloe 1epad ~ole~alaoo abue~ alOue 1oA!d aleld lepad ~ole~alaco alOue 1eluozuo4 aleld 1epad ~oleJalaoo alqe!`eA U6!saa a~els ~ ~alSeW . , ., ~ -1mT~T~ ~

agues ~uaw~sntpe alOue 1eo!yaA mow Ma!A Pea. agues ~uaw~sntpe alOue repanel mow Ma!A Pea. alOue 1ec!yaA ~o~!w Ma!A Pea. alOue repanel JO u!w Ma!A Pea. alOue 1eo!yaA ~o~!w xaAuoo ap!s ~a alCue 1e~a~el ~o u!w xaAuoo ap!s ~a abu ~uaw~sntpe alCue 1eo!yaA ~o~!m ~e~ ap!s ua abue ~usw~sntpe alCue 1e~a~el ~o~!w ~e~ ap!s ga alOue 1eo!yaA ~o~!w ~e~ ap!s ua albue 1e~a~el ~o u!w ~e~ 3p!S ga . aCue'1usw~sntpe 1eo!yaA laued ~uawn~su! ~a abu luswisn!Pe leluoz!~o4 1aued ~uawn~su! ~a alOue 1e~uoz,uo4 1aued ~uawnu~su! ga d~SN m°~} dBlON lo aouels!p le~uoz!~o alCue 1eo!yaA laued ~uswn~su! le~lua . aDue~ ~uaw~sntpe 1eo!yaA laued ~uswn~;su! ~46 . abuz . ~uaw~sntpe leluozuo4 1aued ~uawnJ~su! ~46 . alqe!JeA u6!SaO aAels 7 JalSew

- ~ - to JV101 d8SN wool iouac- LIsapow JO aces IUoJ; am Jo aoue~s!p 1eluozuo4 ~ _ d~SN men] deed JO acuels!p le~uoz!~o~ cut d~SN W°J} d~ld lo aoue~s!p le~ale ddSN wo31 dH~ lo acuels!p lec!ya' m d8SN mOJ] d83 ]° acUelS!P leluozuoc m OM wo~] l46!a4 ap!s ~aMol pla!4spu!N ~ _ ~: ., s alOue 1ec!yaA Jo~!w xaAuoo ~ol!uow ~aBuasse albue le~alel JO U!W xaAuoo JOl!UOW Jabuasse alOue 1eo!yaA Jo~!m xaAuoo ap!s ~46 alOue leJa~el ~oJ~!w xaAuoo ap!s ~46 abue uswisn~pe alCue 1eo!yaA JOU!m ~e~ ap!s ~46 abue ~uaw~snEpe alCue 1e~alel ~o~!w ~e~ ap!s ~46 alCue 1eo!yaA ~ou!w ~e~ ap!s ~46 aldue 1e~a~el ~o~u!w 1e~ ap!s ;46 alqe!`eA U6!Saa a~els ~ ~alSeW

B.6 Functional Design Relationships 1. SH9. horizontal distance of NDEP from NSRP Design Var. | SH9. horizontal dis tnce of NDEPfromNSRP ~ Classification ~Slave Related Design SP9. seat pan neutral horizontal angle (5°) Variable (From) SB 11. seat back neutral vertical angle (10°) Related HL1. eye to body center line Anthropometric HL4. cervical pivot to shoulder pivot Variable HL8. shoulder pivot to hip pivot HL12. horizontal length from hip pivot to SRP (sitting) Related Design Guideline Key Design Concept Drawings Design Function SH9 = median of HL12 x cos (SP9) - (HL4 + HL8) x sin (SP9 + SB11) + HL1 = median of [5.7, 6.2] = 5.9 cm Design Value SH9 = 5.9 cm Comment 2. SH10. vertical distance of NDEP from NSRP Design Var. SH10. vertical distance of NDEP from NSRP Classification Master Related Design SP9. seat pan neutral horizontal angle (5°) Variable (From) SB11. seat back neutral vertical angle (10°) HL3. eye to cervical pivot Related HL4. cervical pivot to shoulder pivot Anthropometric HL8. shoulder pivot to hip pivot Variable HL11. vertical length from hip pivot to SRP (sitting) HL12. horizontal length from hip pivot to SRP (sitting) Related Design Guideline Key Design Concept Drawings SH10 = median of HL11 x cos (SP9 + SB 11) + HL12 x sin (SP9) + Design Function (HL4 + HL8) x cos (SP9 + SB 11) + HL3 = median of [68.69 82.9] = 75.8 cm (range of SH10 = 14.3 cm) Design Value SH10 = 75.8 cm The total of vertical seat adjustment ranges (SP13/SP14) needs to be greater than 14.3 Comment cm to accommodate the range of SH10 for 5th percentile female to 95th percentile male. B - 21

3. SB ~ I. seat back neutral vertical angle Design Var. Related Design Variable (From) Related Anthropometric Variable Related Design Guideline Key Design Concept Drawing SBll.seat back neutralverticalangle | Classification | Master _ s~ walked ~n~th~imn~ alive) SP10. seat pan angle adjustment range (0°) HA3. neck ventral flexion [0°, 30°] HA14. hip flexion [60°, 85°] Diffrient et al.(1981) - the range of seat back vertical angle for an operator: [10°, 15°] - the range of seat back vertical angle for a operator: [18°, 22°] Maintain the comfortable ROM ranges of the neck and hip. :..~...~...i-...~.,' ~ / \'! \/ BY SB11 ~ range of [90° + SP9 + SP10 - HA14] Design Function = range of t10°, 35°] (range of SB 1 1 = 25°), to maintain the comfortable hip ROMs, or SB 11 ~ range of HA3 = range of [0°, 30°] (range of SB 11 = 30°), to maintain the comfortable neck ROMs Design Value Comment SB11 = 10° . 1. Seat pan angle adjustment is not allowed in this study (SP10 = 0°~. 2. The neck ventral flexion angle (HA3) of the standard driving posture is 15° and the hip flexion (HA14) is 80°. In this condition, the seat back neutral vertical angle (SB 1 1) is determined as 15°. B - 22

4. SBl2. seat back angle adjustment range Design Var.| SBl2.seat back ang adjustment range ~ Classification ~Master Related DesignSB 1 1. seat back neutral vertical angle Variable (From) Related Anthropometric Variable RelatedDiffrient et al. 1981 ) Design - the comfort zone of seat back vertical angle: [10°, 30°] (p. 9) Guideline - seat back angle adjustment range: _5° (p. 15) Key Design Maintain the comfortable ROM ranges of the neck and hip. Concept W~ Drawing ~ ~ 1 ~1 1 ~, Y SB 12 < range of SB 1 1 = range of [10°, 35°] = + 12.5° (range of SB11 = 25°), to maintain the Design Functioncomfortable hip ROMs, or < range of [0°, 30°] = + 15° (range of SB 11 = 30°), to maintain the comfortable neck ROMs Design ValueSB 12 = + 10° Comment B - 23

5. SP9. seat pan neutral horizontal angle Design Var. SP9. seat pen neutral horizontal angle | Classification | Master Related Design SB11. seat back neutral vertical (10°) Variable (From) SB12. seat back angle adjustment range (+10°) Related HA14. hip flexion t60°, 85°] Anthropometric Variable Related Diffrient et al.~1981) Design - seat pan horizontal angle of 5° to 20° to prevent the seated person from sliding Guideline forward (p.151. - comfortable hip flexion angle: [60°, 85°] (p. 9) Key Design 1. maintain the comfortable ROM ranges of the hip. Concept 2. prevent the seated person from sliding forward. 1a ...., ~ 1~1 .~\~\ 1 ~ WNN Iraqi;: y Drawing \^ ~ ~ / \ s, : ~ 1 ~ 1 ~ ~ ~ \ ~ . .~ . . _ . 1 N:~ ~ \~ ~ ~.~~~ ~ 1 ~Y SP9e [HA14+SB11 +SB12-90°] Design Function = [-25°, 20°], for comfortable hip ROM, and SP9 > 5° for preventing the sliding Design Value SP9 = 5° 1. The hip flexion (HA14) of the standard driving posture is 80° and the seat back neutral vertical angle (SB 1 1) is 15°. In this condition, the seat pan neutral horizontal angle (SP9) is determined as 5°. Comment 2. Seat pan angle adjustment is not allowed in this study (SP10 = 0°~. 3. In case of that the seat pan angle is adjusted, the seat pan neutral angle (SP9) needs to be 12.5° (median of [5°, 20°~) and the corresponding seat pan angle adjustment range is + 7.5° to provide sufficient adjustability for the hip joint. B - 24

6. SP 10. seat pan angle adjustment range Design Var. | SP10.seatpanangl' adjustment range | Classification | Master Related Design SP9. seat pan neutral horizontal angle Variable (From) Related Anthropometric Variable Related Diffrient et al.~1981) Design - seat pan horizontal angle of 5° to 20° to prevent the seated person from sliding Guideline forward (p.15~. - comfortable hip flexion angle: [60°, 85°] (p. 9) Key Design 1. Maintain the comfortable ROM ranges of the hip. Concept 2. Prevent the seated person from sliding forward. Drawing | 1~ ~~- ~\ \ \ 1 ~' ~\~/ 1 ~ SP10 < range of SP9 Design Function = range of [5°, 20°] =+7.5 ° Design Value SP10 = 0° (no adjustment) 1. Seat pan angle adjustment is not allowed in this study (SP10 = 0°). Comment 2. In case of that the seat pan angle is adjusted, the seat pan neutral angle (SP9) needs to be 12.5° (median of [5°, 20°]) and the corresponding seat pan angle adjustment range is + 7.5° to provide sufficient adjustability for the hip joint. B - 25

7. SP! I/SPl2. seat fore/aft adjustment range Design Var. SPll/SP12.seat fore/aft adjustment range | Classification | Master SH9. horizontal distance of NDEP from NSRP TW10. horizontal distance of NSWRP from NSRP Related Design PB9. horizontal distance of BPRP from NSRP Variable (From) PA9. horizontal distance of APRP from NSRP IL9. horizontal distance of NLIRP from NSRP IR9. horizontal distance of NRIRP from NSRP Related Anthropometric Variable Related Design Guideline Key Design The seat should provide sufficient adjustability to accommodate the variations of the Concept design eye point location, steering wheel reference point (RP) location, pedal RP locations and instrument panel RP locations for the intended population groups. , Drawing SP1 1/SP12 > max. (range of SH9, range of TWIG, range of PB9, range of PA9, range of IL9, range of IR9) Design Function = max. (range of [5.7, 6.2], range of t39.8, 48.8], range of [77.4, 95.8], range of [77.3, 95.7], range of [33.2, 43.1], range of [38.6, 51.9~) = 18.4 cm Design Value SP1 1/SP12 = + 9.2 cm (for total of fore and aft adjustments) Comment B - 26

8. SPl3/SPl4. seat upwar~downward adjustment range Design Var. | SP13/SP14.seat upward/downward adjustment range ~ Classification | Master SH10. vertical distance of NDEP from NSRP SP15. vertical distance of NSRP from WO Related Design TW11. vertical of NSWRP from NSRP Variable (From) PB l O. vertical distance of BPRP from NSRP PAID. vertical distance of APRP from NSRP IL10. vertical distance of NLIRP from NSRP IR10. vertical distance of NRIRP from NSRP Related Anthropometric Variable Related Design Guideline Key Design The seat should provide sufficient adjustability to accommodate the variations of the Concept design eye point location, steering wheel reference point (RP) location, pedal RP locations and instrument panel RP locations for the intended population croups. , . _ . Drawing | SP13/SP14 > max. ( ange of SH10, range of SP15, range of TW11, range of PB 10, | range of PA10, range of IL10, range of IR10) Design Function = max. (range of [68.6, 82.9], range of [33.3, 40.0], range of [26.5, 32.8], range of [10.3, 12.9], range of [8.0, 10.0], range of [10.9, 14.9], range of [28.4, 32.9]) = 14.3 cm Design Value SP13/SP14 = + 7.2 cm (for total of upward and downward adjustments) Comment B - 27

9. SPl5. vertical distance of NSRP from WO Design Var. SP15. vertical distance of NSRP from WO Classification Master Related Design SP9. seat pan neutral horizontal angle (5°) Variable (From) SB11. seat back neutral vertical angle (10°) HL11. vertical length from hip pivot to SRP HL12. horizontal length from hip pivot to SRP Related HL14. femoral link Anthropometric HL15. shank link Variable HL17. ankle pivot height from floor with shoes HL18. horizontal length from heel point to ankle pivot HA17. knee flexion (65°) HA19. ankle flexion (0°) Related Diffrient et al.~1981) Design - The maximum SRP height is 46.0 cm when the knee flexion is 70° (p. 201. Guideline Key Design 1. Maintain the comfortable ROM ranges of the hip, knee, and ankle. Concept 2. Maintain reachability of foot controls with the ball of foot on the pedal plate pivot. Drawing ~ 7 ~ ~ | F ~. - i.' | D I! ~ 1 hi\ ~ ^r ~ ~ wr4~o~; / b ~ 1 ~ AL it .......... .. .. .... ~. ~ . ~ ... _ ~SS;A- ~I trio o;~;o SP15 = median of-HL11 x cos (SP9 + SB11) - (HL12 + HL14) x sin (SP9) Design Function + (HL15 + HL17) xcos (90° + SP9 - HA17) +HL18 xsin(90°+SP9-HA17-HA19) = median of [33.3, 40.0] cm = 36.7 cm (range of SP15 = 6.7 cm) Design Value SP15 = 36.7 cm The vertical adjustment range of seat (SP13/SP14) needs to incorporate the range of Comment SP15 (6.7 cm) to accommodate the US population from the 5th percentile female to 95th percentile male. B - 28

JO. TWO. steering wheel diameter Design Var. TW1. steering wheel diameter Classification Master Related Design SP9. seat pan neutral horizontal angle (5°) Variable (From) SB11. seat back neutral vertical angle (10°) HL5. shoulder pivot width HL21. humeral link Related HL22. forearm link Anthropometric HL23. wrist to hand-grip Variable HA6. shoulder flexion (10°) HA7. shoulder abduction (8.2°) HA9. elbow flexion (70°) Related Diffrient et al.~1981) - 35.6-40.6 cm for a compact automobile (p. 16) Design SAE(1994) - 45.0 to 56.0 cm for class B vehicle Guideline Key Design Maintain the comfortable ROMs for the elbow and shoulder Concept Drawings TW1 = median of HL5 + t(HL22 + HL23) x cos (HA9 - 90 + SP9 + SB 11 + HA6) Design Function + HL21 x sin (SP9 + SB 1 1 + HA61] x sin (HA7) x 2 = median of [40.4, 51.1] = 45.7 cm Design Value TW1 = 45.7 cm 1. Assume that the shoulder abduction is 8.2°and the elbow flexion is 70° while the Comment hands are at '9 and Oppositions of a clock) on the wheel. 2. Assume that the steering wheel is power-type, not manual. Accordingly, the force requirement to operate the wheel was ignored. I. TW7. wheel telescope adjustment range Design Var. TW7. wheel telescope adjustment range Classification Slave Related Design I-W10. horizontal distance of NSWRP from NSRP Variable (From) I~W11. vertical distance of NSWRP from NSRP Related Anthropometric Variable Related Design Guideline Key Design Concept Drawings Design Function TW7 = sqrt Strange of IW10~2 + (range of TW1 1~2] = sqrt ~ 9.02 + 6.32] = 11.0 cm Design Value TW7 = 11.0 cm Comment B - 29

~2. TW~O. horizontal distance of NSWRP from NSRP Design Var. TW10. horizontal distance of NSWRP from NSRP Classification Master Related Design SP9. seat pan neutral horizontal angle (5°) Variable (From) SB11. seat back neutral vertical angle (10°) HL8. shoulder pivot to hip pivot HL12. horizontal length from hip pivot to SRP (sitting) Related HL21. humeral link Anthropometric HL22. forearm link Variable HL23. wrist to hand-grip HA6. shoulder flexion (10°) HA7. shoulder abduction (8.2°) HA9. elbow flexion (70°) Related Design Guideline Key Design 1. Maintain the comfortable ROMs for the elbow and shoulder Concept 2. Maintain reachability of the steering wheel with the hand grip Drawings ~ TW10 - median of [HL21 x sin(SP9 + SB11 + HA6) + (HL22 + HL23) x Design Function cos(HA9 - 90 + SP9 + SB11 + HA6)] x cos(HA7) + HL12 x cos (SP9) - HL8 x sin (SP9 + SB11) = median of [39.7, 48.7] = 44.3 cm (range of IW10 = 9.0 cm) Design Value TW10 = 44.3 cm Comment The variation of the horizontal distance of NSWRP from NSRP (TW10) should be considered in the determination of the wheel telescope adjustment range (TWO). B - 30

13. TW11. vertical distance of NSWRP from NSRP Design Var. TW 1 1. vertical distance of NSWRP from NSRP | Classification | Master Related Design SP9. seat pan neutral horizontal angle (5°) Variable (From) SB11. seat back neutral vertical angle (10°) HL8. shoulder pivot to hip pivot HL11. vertical length from hip pivot to SRP (sitting) HL12. horizontal length from hip pivot to SRP (sitting) Related HL21. humeral link Anthropometric HL22. forearm link Variable HL23. wrist to hand-grip HA6. shoulder flexion (10°) HA7. shoulder abduction (8.2°) HA9. elbow flexion (70°) Related Design Guideline Key Design 1. Maintain the comfortable ROMs for the elbow and shoulder Concept 2. Maintain reachability of the steering wheel with the hand grip Drawings TW11 = median of HL11 x cos (SP9 + SB 1 1) + HL12 x sin (SP9) + HL8 x cos (SP9 + SB11) + [(HL22 + HL23) x sin (HA9-90+SP9+SB11+HA6) Design Function - HL21 x cos (SP9 + SB 1 1 + HAN] x cos (HA7) = median of [26.5, 32.8] = 29.6 cm (range of IR10 = 6.3 cm) Design Value TW11 = 29.6 cm Comment The variation of the vertical distance of NSWRP from NSRP (FW11) should be considered in the determination of the wheel telescope adjustment range (IW71. B - 3 1

14. PB1. brake pedal plate length Design Var. PB 1. brake pedal plate length Classification Simple Related Design PB 12. brake pedal arm length ( 18.0 cm) Variable (From) PB20. brake pedal actuation angle (20 a) Related HL18. horizontal length from heel point to ankle pivot Anthropometric HL19. horizontal length from ankle pivot to ball-of-foot Variable Related Van Cott and Kinkade (1972) Design - 7.6 cm Min. Guideline 1. The pedal should be big enough so that the operators within the 5th percentile Key Design female to the 95th percentile male can press the pedal with the ball of the foot. Concept 2. The pedal plate length should be larger than the amount of slippage of the ball-of | foot on the pedal F ate which is occurred while actuating the pedal. 1 ?~ 1 ~1 1 :-~11 1 ~^ >~.~.Y,.~, 1 ~i } , ;~. ~,= Drawing .h~= ~9 - ST; 1~ ~\ \ fit \ ~ \ 1 ' B = HL18 + HLl 9 (B: horizontal length of ball-of-foot from heel point) F = PB12 x PB20 (F: foot angle rotation angle required for full pedal actuation) B esign Function | S = ,|[B sin(F) - PB 2sin( PB20)]2 + [B(1 - cos(F) + PB12(1 - cos(PB20)]2 (S: slippage of the ball-of-foot on the pedal plate during pedal actuation) PB1>S =~2.1,2.31cm Desien Value PB1 = 8.0 cm Y Comment B - 32

15. PB2. brake pedal plate width Design Var. | PB2. brake pedal pi; te width | Classification | Master l Related Design PB8. lateral distance of BPRP from WO (8.9 cm) Variable (From) PA2. accelerator pedal plate width (5.6 cm) PA8. lateral distance of BPRP from WO (21.8 cm) Related HL16. shoe width Anthropometric Variable Related Diffrient et al. ( 1981 ) Design - 10.2 cm optimum and 7.6 cm minimum for a treadle pedal Guideline - 5.1 cm minimum for the clearance between the brake and accelerator pedals 1. The brake pedal plate should be wide enough so that a operator activate the pedal Key Design with fast foot movement. Concept 2. The brake and accelerator pedals must have a sufficient clearance in order to prevent an unintended pedal activation. 1 ~[ Drawing | Em/ ~J 1 ~: 1 ~1 1 Low 1 1 I- ~ '1 | PB2 = 2 x ~ (PA8- ~ B8) - C- PA2 ~ (C: clearance between the pedals; 5.1cm) or PB2 = HL16 = median of [9.0, 11.6] cm = 10.3 cm Design Function | ID = lOg2( ~ P.' ~ ) (ID: index of task difficulty (Drum, 1975) RMT = 0.1874 + 0.0854 x ID (RMT: reciprocal foot movement time; unit: msec)) SMT= RMT (SMT: single foot movement time; unit: msec) 1.64 SMT of a 10 cm width brake pedal = 121 ~ 127 msec. Desien Value PB2 = 10.0 cm ~ 1. Pedals with a maximum width matter little in terms of foot movement time as long as there is enough clearance between adjacent pedals (Van Colt and Kinkade, Comment 19721. 2. Reaction time must be added to the movement time to obtain overall performance time estimates of foot movement. B - 33

16. PB4. brake pedal plate shape | Design Var. | PB4. brake pedal ply shape | Classification | Simple Related Design PB 10. vertical distance of BPRP from WO (1 1.6 cm) Variable (From) Related HL18. horizontal length from heel point to ankle pivot Anthropometric HLl9. horizontal length from ankle pivot to ball-of-foot Variable Related Van Colt and Kinkade (1972) Design- The pedal shape can be square, rectangular, circular, or oval as long as the pedal is Guidelineflat and affords enough area of contact with the shoe. 1. The pedal surface should provide a sufficient contact area for the ball-of-fools of Key Designthe population which consists of the 5th percentile female to the 95th percentile male Conceptwhile actuating the pedal. 2. The curvature of a curved pedal plate should be determined on the basis of the differences of initial foot angles. 1~ 1~ 1~ Drawing I = ~ = ~ 3 ,: ~ . , ~s . , ~, ~, , . .. i, ............... ..... ~ T ~ . I = arcsin( PB10 ) (I: initial foot angle) Design Function HL18 + HL19 = [35.0°, 46.0°] (range of I = 11.0 °) Design Value PB4 = curved pedal plate Comment 1. If a brake pedal plate shape is flat, then the brake pedal plate should have a pivot with a pivot angle range which incorporate the variation of the initial foot angles. B - 34

17. PB5. brake pedal plate lateral angle Design Var. PB5. brake pedal plate lateral angle . | Classification | Simple Related Design Variable (From) Related HA15. hip abduction (0°) Anthropometric HA16. hip rotation (0°) Variable HA18. knee rotation (0°) Related Compton (1994) Design - 12° (for a treadle pedal) Guideline Key Design Maintain the comfortable ROM ranges of the hip, knee, and ankle Concept Drawing ~/ 1 ~ ~-,6L,,,,1~g, I ~ ,m;44idd ti ~ , ~W 49 ~ a ~12 a, I~ 1 Design FunctionPBS = HA 1 s + HA 1 6 + HA 1 8 =0° Design ValuePB5 = 0° Comment B - 35

18. PB6. brake pedal plate horizontal angle Design Var. PB6. brake pedal plate horizontal angle Classification Slave Related Design SP9. seat pan neutral horizontal angle (5°) Variable (From) Related HA17. knee flexion (65°) Anthropometric HA19. ankle flexion (-10°) Variable Related Compton (1994) Design - 4so Guideline Hertzberg and Burke ( 197 1 ) -25 ~35° Key Design Maintain the comfortable ROM ranges of the hip, knee, and ankle. Concept _. 1 I=. 'I D · ~ Of \ ~fit rawlne ................... m ~ In ~ ~! ~ it.< ~ i ~ ;> >~ ~ .~.. ^ . ~:.~.; . . ~:~.¢ .:Y-=Y~ C :: ~< :. Ma . ~ K ~ ~ ~ Design Function PB6 = 90°+SP) - HA17 - HA19 =40° Design Value PB6 = 40° 1. The initial angle (nonactive) of the pedal should not be too steep; otherwise, the Comment operator's ankle tires easily (Woodson, 19811. 2. The operator should always be able to rest his or her heel on the floor while holding or depressing the pedal (Woodson, 1981). B - 36

19. PB7. brake pedal plate pivot angle range Design Var. | PB7. brake pedal pla e pivot angle range | Classification | Slave l Related Design Variable (From) Related Anthropometric Variable Related Design Guideline Key Design Concept Drawing Design Function Design Value PB7 = 0 ° 1. Since the brake pedal plate shape (PB4) is curved, a pivot is not needed on the brake pedal plate. Comment 2. If the brake pedal plate shape is flat, then the pivot angle range of the brake pedal plate should be 11.0° at least (see the guideline of the brake pedal plate shape PB4)). B - 37

20. PB8. lateral distance of BPRP from NSRP Design Var. Related Design Variable (From) Related Anthropometric Variable Related Design Guideline Key Design Concept Drawing Design Function Design Value Comment . PB8.1ateraldistanceofBPRP from NSRP I Classification I Master PB9 horizontal distance of BPRP from NSRP I HL9. hip pivot width HA15. hip abduction (0°) HA16. hip rotation (0°) HA18. knee rotation (0°) Diffrient et al. (1981) 1. Maintain the comfortable ROM ranges of the hip, knee, and ankle. 2~ \~ - PB8 = 05 x HL9 + PB9 x sin(HA15 + HA16 + HA18) = median of [8.4, 9.3] cm = 8.9 cm (range of PB8 = 0.9 cm) PB8 = 8.9 cm | 1. The brake and accelerator pedals must have a sufficient clearance in order to prevent an unintended pedal activation. 2. Minimum spacing between the pedals should be 5.1 cm (Diffrient et al., 1981). B - 38

21. PB9. horizontal distance of BPRP from NSRP PB9.horizontaldistanceofBPRP from NSRP | Classification I Master Design Var. Related Design Variable (From) SP9. seat pan neutral horizontal angle (5°) PB6. brake pedal plate horizontal angle (40°) HL12. horizontal length from hip pivot to SRP HL14. femoral link HL15. shank link HL17. ankle pivot height from floor with shoes HLl9. horizontal length from ankle pivot to ball-of-foot HA15. hip abduction (0°) HA16. hip rotation (0°) HA17. knee flexion (65°) HA18. knee rotation (0°) Related Anthropometric Variable Related Design Guideline Diffrient et al.~1981) - The horizontal distance of pedal plate reference point (touched by the ball-of-foot) should be 77.7 to 94.0 cm, and thus its median value is 85.9 cm (p. 201. Carrier et al.(l992) - The median of SRP horizontal distance from heel resting point (HRP) should be 69.0 cm, which is equivalent to the horizontal distance to pedal plate reference point from NSRP of 82..4cm (p. 31~. 1. Maintain the comfortable ROM ranges of the hip, knee, and ankle. 2. Maintain reachability of foot controls with the ball of foot on the pedal plate pivot. Key Design Concept Drawing ~ it: .`p,., By. ~ t~ :?; :~ :: ~...~,crA° r^:,~y w ~ ~'' ~: \: ,, Design Function PB9 = ~ (HL12 + HL14) x cos(SP9) + (HL15 + HL17) x sin(90°+SP9 - HA17) +HL19 x cos(PB6) ~ x cos(HA15 + HA16 + HA18) = median of [77.4, 95.8] cm = 86.6 cm (range of PB9 = 18.5 cm) Design Value Comment PB9 = 86.6 cm The horizontal adjustment range of seat (SP1 1/SP12) needs to incorporate the range of PB9 (18.5 cm) to accommodate the intended population from the 5th percentile female to 95th percentile male. B - 39

22. PB ~ O. vertical distance of BPRP from WO Design Var. | PBl0.verticaldistar~eofBPRP from WO j Classification | Master L Related Design PB6. brake pedal plate horizontal angle (40°) Variable (From) Related HL18. horizontal length from heel point to ankle pivot Anthropometric HL19. horizontal length from ankle pivot to ball-of-foot Variable Related Design Guideline Key Design 1. Maintain the comfortable ROM ranges of the hip, knee, and ankle. Concept 2. Maintain reachability of foot controls with the ball of foot on the pedal plate pivot. ~ W~ ~ I ~ ~ ~= Ma ibid L>.~ L Drawing I V ~-¢~1 [ 1 ~1~ '~p..~<X".~S~.>r.X~_ ~ ' r ~ 1 153.~.~. ~, 2 ~ _ ~ S:ic~ :'c. Design Function PB10 = (HL1 8 + HL19) x sink PB6) = median of [10.3, 12.9] cm = 1 1.6 cm (range of PB 10 = 2.6 cm) Desien Value ~ The vertical adjustment range of seat (SP13/SP14) needs to incorporate the range of Comment PB10 (2.6 cm) to accommodate the US population from the 5th percentile female to 95th percentile male. B -40

23. IBM. brake pedal actuation force Design Var. PB21. brake pedal actuation force Classification Simple Related Design SP15. vertical distance of NSRP from WO Variable (From) Related Anthropometric Variable | Diffrient et al. ( 1981 - 232.6 N (52.3 lb) Max. Van Colt and Kinkade (1972) - 35.6 - 267 N (8-60 lb) Related - Minimum resistance should be greater than the exerted force on the pedal by the Design weight of the leg alone. Guideline - Maximum pedal resistance should never exceed the maximum force exertable by the weakest operator. - For frequently but not continuously used leg-operated pedals, a force of about 30% of the maximum exertable is reasonable. Woodson (1981) - 178 N (40 lb) Max. for a mid-position seat 1. The brake pedal resistance should be greater than the exerted force on the pedal by Key Design the weight of the leg alone to avoid an undesirable activation caused by an Concept accidental contact with the pedal. 2. The brake pedal resistance should be less (about 30~50%) than the maximum force exertable by the weakest operator to actuate the pedal with a reasonable force. Drawing Design Function Design Value PB21 = 66.8 ~ 155.8 N (15 ~ 35 lb) Comment 24. PB22. brake pedal recovery force Design Var. | PB22. brake pedal rl covery force | Classification | Simple L Related Design | [ Variable (From) Related Anthropometric Variable Related Sanders and McCormick (1993) Design - The pedal should return to its initial position when the operator releases the pedal. Guideline This elastic resistance also reduces the possibility of an undesirable activation caused by an accidental contact with the pedal. Key Design | Concept Drawing Design Function Design Value PB22 = 22.2 N (5 lb) Comment B -41

25. PA ~ . accelerator pedal plate length Desien Var. PAl.acceleratorpedalplatelen~th I Classification I Simple ~. . ~ Related Design PA12. accelerator pedal arm length (18.0 cm) Variable (From) PA20. accelerator pedal actuation angle (20°) Related HL18. horizontal length from heel point to ankle pivot Anthropometric HL19. horizontal length from ankle pivot to ball-of-foot Variable Related Van Colt and Kinkade (1972) and Woodson (1981) Design - 27.9 ~ 30.5 cm (for a treadle pedal) Guideline Woodson (1981) - 7.6 cm for a hanging pedal 1. The pedal should be big enough so that the operators within the 5th percentile Key Design female to the 95th percentile male can press the pedal with the ball of the foot. Concept 2. The pedal plate length should be larger than the amount of slippage of the ball-of foot on the pedal plate which is occurred while actuating the pedal. 1 \~ I ~^ 1 ~,~ x,~ i} , ( Drawing x , ~ \ .. ~ \ 1 ' I : >~ ~ ;> 1: a: \: :~::: .:: a: . ~ ...::.. ..:.. A 1 / \ 1 '3~ B = HL18 + HLl 9 (B: horizontal length of ball-of-foot from heel point) F = PA12 x PA20 (F: foot angle rotation angle required for full pedal actuation) B . . ~· eslgn unction 5 = ~ILBsin(F)- PAl2sin(PA20~12 +[B(1-cos(F)+ PAl2~1-cos(PA20~]2 (S: slippage of ball-of-foot on the pedal plate during pedal actuation) PA1>S =[2.1,2.3]cm Design Value PA1 = 14.0 cm Comment B -42

26. PA2. accelerator pedal plate width Design Var. PA2. accelerator pedal plate width Classification Slave Related Design PB8. lateral distance of BPRP from WO (8.9 cm) Variable (From) PB2. brake pedal plate width (10.0 cm) PA8. lateral distance of BPRP from WO (21.8 cm) Related HL16. shoe width Anthropometric Variable Related Diffrient et al. (1981) Design - 8.9 cm optimum and 5.1 cm minimum for a treadle pedal Guideline - 5.1 cm minimum for the clearance between the brake and accelerator pedals Key Design The brake and accelerator pedals must have a sufficient clearance in order to prevent Concept an unintended pedal activation. . :. Drawing /: ~ :~+ ~ ~: 1 ~ | PA2 = 2 x { (PA8 - P '8) - C _ PB2 } (C: clearance between the pedals; 5. lcm) = 5.6 cm . . ID = log ( PA8 PB8 ~ (ID index of task difficulty (Drury, 1975) DeSlgI1 FUllCtlOII 2 PA2 + HL16 RMT = 0.1874 + 0.08s4 x ID (RMT: reciprocal foot movement time; unit: msec)) SMT = RMT (SMT: single foot movement time; unit: msec) 1.64 SMT of a 5.6 cm width accelerator pedal = 131 ~ 139 msec. Design ValuePA2 = 5.6 cm 1. Pedals with a maximum width matter little in terms of foot movement time as long as there is enough clearance between adjacent pedals (Van Colt and Kinkade, Comment19721. 2. Reaction time must be added to the movement time to obtain overall performance time estimates of foot movement. B -43

27. PA4. accelerator pedal plate shape Design Var. | PA4. accelerator edal late she e I Classification I Sim le P P P . . P Related Design PA10. vertical distance of APRP from WO (9.0 cm) Variable (From) Related HL18. horizontal length from heel point to ankle pivot Anthropometric HL19. horizontal length from ankle pivot to ball-of-foot Variable Van Colt and Kinkade ( 1972) Related - The pedal shape can be square, rectangular, circular, or oval as long as it is flat Design and affords enough area of contact with the shoe. Guideline Woodson ( 1981 ) - A small curved pedal will make an equally satisfactory acceleration control. 1. The pedal surface should provide a sufficient contact area for the ball-of-fools of Key Design the population which consists of the 5th percentile female to 95~ percentile male Concept while actuating the pedal. 2. A hanging pedal with a flat surface needs to have a pivot at the penal Plate to accommodate the different initial foot angles of the population from the floor. 1 at. I ~ IN Drawing I I . :. . -< ~ = ~ = \^ ~ J T . I = arcsin( ° ) (I: initial foot angle) Design Function HL18 + HL19 = [26.5 °, 34.0°] (range of I = 7.5 °) Design Value PA4 - flat pedal plate Comment . . . .. . , ~ B -44

Maintain the comfortable ROM ranges of the hip, knee, and ankle 28. PA5. accelerator pedal plate lateral angle PA5. accelerator pedal plate lateral angle | Classification | Simple Design Var. Related Design Variable (From) Related Anthropometric Variable HA15. hip abduction ( 10°J HA16. hip rotation (0°) HA18. knee rotation (2°) Compton ( 1994) and Woodson ( 1981 ) - 12° (for a treadle pedal) Related Design Guideline Key Design Concept Drawing it/ W1\ I ~ - Gil,..: hi.... /// ,: ~ 1 =,~., , .~. ~., ~ , ~ ~ l A/ Id: i i, Design Function PA5 = HA15+ HA16+ HA18 = 12° PA5= 12° Design Value Comment B -45

29. PA6. accelerator pedal plate horizontal angle Desien Var. PA6. accelerator pedal plate horizontal angle Classification Slave Related Design SP9. seat pan neutral horizontal angle (5°) Variable (From) Related HA17. knee flexion (65°) Anthropometric HAl9. ankle flexion (0°) Variable Related Compton (1994) Design - 45° (for a treadle pedal) Guideline Woodson ( 1981 ) - 15 ~ 30° (for a pedal with a mid-position seat height) Key Design Maintain the comfortable ROM ranges of the for the hip, knee, and ankle. Concept 1 ~ 14~,~$ i Drawing I ~ ~ \~ ~ . 1 ~ I've'' ~1 1 ~.~-.i$,6 ~= ~ -~-.^~.g ~ ~Air.- ~ <~ ~ ~.'ii. hi. .J-~---~-- i- -i ~3< ~ :< 7~.'i , .'<:~5i. ~<~1 Design Function PA6 = 90°+SP9 - HA17 - HA19 =30° Design Value PA6 = 30° 1. The initial angle (nonactive) of the pedal must not be too steep; otherwise, the Comment operator's ankle tires easily (Woodson, 1981~. 2. The operator should always be able to rest his or her heel on the floor while holding or depressing the pedal (Woodson, 1981~. B -46

30. PA7. accelerator pedal plate pivot angle range | Design Var. | PA7. accelerator pet al plate pivot angle range | Classification | Slave Related Design PA10. vertical distance of APRP from WO (9.0 cm) Variable (From) Related HL18. horizontal length from heel point to ankle pivot Anthropometric HLl9. horizontal length from ankle pivot to ball-of-foot Variable __ Related Design Guideline Key DesignA hanging pedal with a flat surface needs to have a pivot at the pedal plate to Conceptaccommodate the different initial foot angles of the population from the floor. I~ IN Drawing | 1 ~ ~ ~ ~ ^~: ~ = e ~ 3 ibex I ~~ - ~ · LIED 1 ' N~ I ~! ,. .. , ... ~ - . ~. .. ~ ....... Y ...... . . . ... . ~ T Nd~ e e 1 = arcsin( PA10 ) (I: initial foot angle) Design Function HL18 + HL19 PA7 > range of I > range of [26.5 °, 34.0°] = 7.5 ° Design Value PA7 = 10 ° Comment B - 47

31. PAS. lateral distance of APRP from NSRP PA8. lateral distance of APRP from NSRP | Classification | Master Design Var. Related Design Variable (From) Related Anthropometric Variable PA9. horizontal distance of APRP from NSRP HL9. hip pivot width HA15. hip abduction (10°) HA16. hip rotation (0°) HA18. knee rotation (2°) Woodson (198 1) - 17.8 ~ 20.3 cm Related Design Guideline Key Design Concept 1. maintain the comfortable ROM ranges of the hip, knee, and ankle. 2. maintain reachability of foot controls with the ball of foot on the pedal plate pivot. Drawing ~:<'wXi; ^:~: i:'+: :~ k=~'~'R~ at; Hi At' ~ ~ ~hi\ / / T¢~N [f ~ - // 'I I A me ................. i ; ...... : .. i.; . ............. ...... ~ ~ ~ ~ , Design Function Desien Value Comment . PA8 = 05 x HL9 + PA9 x sin(IlA15 + HA16 + HA18) = median of [20.0, 23.7] cm = 21.8 cm (range of PA8 = 3.7 cm) PA8 = 21.8 cm 1. The brake and accelerator pedals must have a sufficient clearance in order to prevent an unintended pedal activation. 2. Minimum spacing between the pedals should be 5.1 cm (Diffrient et al., 1981). B -48

32. PA9. horizontal distance of APRP from NSRP Desien Var. PA9. horizontal distance of APRP from NSRP Classification Master Related Design SP9. seat pan neutral horizontal angle (5°) Variable (From) PA6. brake pedal plate horizontal angle (30 °) HL12. horizontal length from hip pivot to SRP HL14. femoral link HL15. shank link Related HL17. ankle pivot height from floor with shoes Anthropometric HL19. horizontal length from ankle pivot to ball-of-foot Variable HA15. hip abduction (10°) HA16. hip rotation (0°) HA17. knee flexion (65 °) HA18. knee rotation (2°) Diffrient et al.~1981) - The horizontal distance of pedal plate reference point (touched by the ball-of-foot) Related should be 77.7 to 94.0 cm, and thus its median value is 85.9 cm (p. 20~. Design Carrier et al.( 1992) Guideline - The median of SRP horizontal distance from heel resting point (HRP) should be 69.0 cm, which is equivalent to horizontal distance from NSRP to pedal plate reference point of 82..4cm (p. 311. Key Design 1. maintain the comfortable ROM ranges of the hip, knee, and ankle. Concept 2. maintain reachability of foot controls with the ball of foot on the pedal plate pivot. Drawing - | awry !_ 1 W-~.~'= 1 I\ .: _ I ~ Ii . _ - -Rho:- PA9 = {(HL12 + HL14) x cos(SP9) + (HL15+ HL17) x sin(90°+SP9 - HA17) Design Function +HLl9 x cos(PA6)} x cos(HA15+ HA16+ HA18) = median of [77.3, 95.7] cm = 86.4 cm (range of PA9 = 18.4 cm) Desien Value PA9 - 86.4 cm ~ The horizontal adjustment range of seat (SP1 1/SP12) needs to incorporate the range Comment of PA9 (18.4 cm) to accommodate the intended population from the 5eh percentile female to 95th percentile male. B -49

33. PAl O. vertical distance of APRP from WO Design Var. PA10. vertical distance of APRP from WO T Classification 1 Master Related Design PA6. accelerator pedal plate horizontal angle (30 a) Variable (From) Related HL18. horizontal length from heel point to ankle pivot Anthropometric HL19. horizontal length from ankle pivot to ball-of-foot Variable Related Design Guideline Key Design 1. Maintain the comfortable ROM ranges of the hip, knee, and ankle. Concept 2. Maintain reachability of foot controls with the ball of foot on the pedal plate pivot. 1 ~ \\\ ~ ,~,.~ ~~ 1 \~.\ my/ ~$b ~Bust ~.~C <s;~s sit ~ lo: ~.~:i :&. :: Drawing | :~ ~ 1 \;3~, 1~ Any: ' ~ ~ I ~ ~ ~ ~ ? i Ki = Design Function PA10 = (HL18 + HLl 9) x sin(PA6) = median of [8.0, 10.0] cm = 9.0 cm (range of PA10 = 2.0 cm) Design Value PA10 = 9.0 cm The vertical adjustment range of seat (SP13/SP14) needs to incorporate the range of Comment PA10 (2.0 cm) to accommodate the US population from the 5th percentile female to 95th percentile male. B - 50

34. PA21. accelerator pedal actuation force | Design Var. | PA21.acceleratorp lalactuation force ~ Classification ~Simple Related Design Variable (From) Related Anthropometric Variable Diffrient et al. (1981) - 28.9 - 40 N (6.5 - 9 lb) optimum - 44.5 N (10 lb) Max.; 26.7 N (6 lb) Min. Van Colt and Kinkade (1972) - 28.9 - 40 N (6.5 - 9 lb) Related - 17.8 N (4 lb) Min. Design - Minimum resistance should be greater than the exerted force on the pedal by the Guideline weight of the leg alone. - Maximum pedal resistance should never exceed the maximum force exertable by the weakest operator. - For ankle operated pedals in continuous use, such as an automobile accelerator, the maximum and minimum resistance should be less than those of leg-operated pedals, such as a brake pedal. 1. The accelerator pedal resistance should be greater than the exerted force on the pedal by the weight of the leg alone to avoid an undesirable activation caused by an Key Design accidental contact with the pedal. Concept 2. The accelerator pedal resistance should be far less (about 10~20%) than the maximum force exertable by the weakest operator to actuate the pedal with a reasonable force continuously. Drawine Desien Function Design Value PA21 = 31.2 ~ 40 N (7 ~ 9 lb) Comment 35. PA22. accelerator pedal recovery force Design Var. PA22.acceleratorpedalrecovery force | Classification | Simple Related Design Variable (From) Related Anthropometric Variable Related Sanders and McCormick (1993) Design - The pedal should return to its initial position when the operator releases the pedal. Guideline This elastic resistance also reduces the possibility of an undesirable activation caused by an accidental contact with the pedal. Key Design Concept Drawine Desien Function Desian Value PA22 = 22.2 N (5 lb) Comment B - 51

36. Irk. left instrument pane] horizontal adjustment range Desien Var. IL6. left instrument panel horizontal adjustment ran he Classification Slave _ . ~ Related Design IL9. horizontal distance of NLIRP from NSRP Variable (From) Related Anthropometric Variable Related Design Guideline Key Design Concept Drawings Design Function IL6 2 range of IL9 =rangeof[33.2,43.11=9.9cm Design Value IL6 = 9.9 cm Comment 37. W7. left instrument pane] vertical adjustment range Design Var. IL7. left instrument panel vertical adjustment range | Classification | Slave Related Design IL10. vertical distance of NLIRP from NSRP Variable (From) Related Anthropometric Variable . Related Design Guideline Key Design Concept Drawings Design Function IL7 > range of IL10 = range of [10.9, 14.9] = 4.0 cm Desian Value IL7 = 4.0 cm cat Comment B - 52

38. TLS. lateral distance of NETRP from NSRP | Design Var. ~ ~8. lateral distance of NLIRP from NSRP ~ Classification ~Master Related Design TVV1. steering wheel diameter Variable (From) SP9. seat pan neutral horizontal angle (5°) SB11. seat back neutral vertical angle (10°) HL5. shoulder pivot width HL21. humeral link Related HL22. forearm link Anthropometric HL24. wrist to finger-grip Variable HA6. shoulder flexion (0°) HA7. shoulder abduction (22.1 °) HA9. elbow flexion (50°) Related Diffrient et al.~1981) - arm-rest spacing 48.3-55.9 cm (p. 19) Design Guideline Key Design 1. Maintain the comfortable ROMs for the elbow and shoulder Concept 2. Maintain reachability of the left instrument panel with the left finger tips Drawings Design Function IL8 = median of HL5 x 0.5 + [(HL22 + HL24) x cos (HA9 - 90 + SP9 + SB 1 1 + HA6) + HL21 x sin (SP9 + SB 1 1 + HA6~] x sin (HA7) = median of t29.4, 36.6] = 33.0 cm, and IL8 > 0.5 x TW1 = 22.8 cm Design Value IL8 = 33.0 cm Comment The lateral distance from NLIRP to NRIRP(IL8 + IR8) should be greater than the recommended arm-rest spacing (48.3 - 55.9 cm). B - 53

39. ~9. horizontal distance of NLIRP from NSRP Design Var. IL9. horizontal distance of NLIRP from NSRP Classification Master Related Design SP9. seat pan neutral horizontal angle (5°) Variable (From) SB 1 1. seat back neutral vertical angle ( 10°) HL8. shoulder pivot to hip pivot HL12. horizontal length from hip pivot to SRP (sitting) Related HL21. humeral link Anthropometric HL22. forearm link Variable HL24. wrist to finger-grip HA6. shoulder flexion (0°) HA7. shoulder abduction (22.1 °) HA9. elbow flexion (50°) Related Design Guideline Key Design 1. Maintain the comfortable ROMs for the elbow and shoulder Concept 2. Maintain reachability of the left instrument panel with the left finger tips _ Drawines Design Function IL9 = median of tHL21 x sin(SP9 + SB 1 1 + HA6) + (HL22 + HL24) x cos(HA9 - 90 + SP9 + SB 1 1 + HA61] x cos(HA7) + HL12 x cos (SP9) - HL8 x sin (SP9 + SB11) =medianof[33.2,43.1]=38.1 cmtrangeofIL9=9.9 cm) Design Value IL9 = 38.1 cm 1. Assume that the shoulder flexion is 0°and the elbow flexion is 50° when the left Comment arm of a bus operator is on the left instrument panel. 2. The horizontal adjustment range of the left instrument panel (IL6) should be 9.9 cm at least to accommodate the 5th percentile female to the 95th percentile male. B - 54

40. ~10. vertical distance of NLTRP from NSRP Design Var. | ~10. vertical dista Ice of NLIRP from NSRP | Classification | Master L Related Design SP9. seat pan neutral horizontal angle (5°) Variable (From) SB11. seat back neutral vertical angle (10°) HL8. shoulder pivot to hip pivot HL11. vertical length from hip pivot to SRP (sitting) Related HL12. horizontal length from hip pivot to SRP (sitting) Anthropometric HL21. humeral link Variable HL22. forearm link HL24. wrist to finger-grip HA6. shoulder flexion (0°) HA7. shoulder abduction (22.1 °) HA9. elbow flexion (50°) Related Design Guideline Key Design 1. Maintain the comfortable ROMs for the elbow and shoulder Concept 2. Maintain reachability of the left instrument panel with the left finger tips Drawines IL10 = median of HL1 1 x cos(SP9 + SB 1 1) + HL12 x sin (SP9) Design Function + HL8 x cos (SP9 + SB 1 1 ) + [(HL22 + HL24) x sin (HA9-90+SP9+SB 1 1+HA6) - HL21 x cos (SP9 + SB 1 1 + HA6~] x cos (HA7) = median of [10.9, 14.9] = 12.9 cm (range of IL10 = 4.0 cm) Desian Value IL10 = 12.9 cm 1. Assume that the shoulder flexion is 0° and the elbow flexion is 50° when the left Comment arm of a bus operator is on the left instrument panel. 2. The vertical adjustment range of the left instrument panel (IL7) should be 4.0 cm at least to accommodate the 5~ percentile female to the 95th percentile male. B - 55

41. {R6. right instrument pane] horizontal adjustment range Design Var. IR6. right instrument panel horizontal adjustment range Classification ~Slave Related Design IR9. horizontal distance of NRIRP from NSRP Variable (From) Related Anthropometric Variable Related Design Guideline Key Design Concept Drawings Design Function IR6 2 range of IR9 = range of [38.6, 51.9] = 13.3 cm Design Value IR6 = 13.3 cm Comment 42. TR7. right instrument pane} vertical adjustment range [ Design Var. | IR7. rightinstrumer: panel vertical adjustment range ~ Classification ~Slave Related Design IR10. vertical distance of NRIRP from NSRP Variable (From) Related Anthropometric Variable Related Design Guideline Key Design Concept Drawings Design Function IR7 2 range of IR10 = range of [28.4, 32.9] = 4.5 cm _ Design Value IR7 = 4.5 cm Comment B - 56

43. TRS. lateral distance of NRTRP from NSRP | Design Var. | IR8. lateral distance of NRIRP from NSRP | Classification | Master Related Design TW1. steering wheel diameter Variable (From) SP9. seat pan neutral horizontal angle (5°) SB 1 1. seat back neutral vertical angle (10°) HL5. shoulder pivot width HL21. humeral link Related HL22. forearm link Anthropometric HL24. wrist to finger-grip Variable HA6. shoulder flexion (15°) HA7. shoulder abduction (27.9°) ~ HA9. elbow flexion (60°) Related Diffrient et al.~1981) - arm-rest spacing 48.3-55.9 cm (p. 19) Design Guideline Key Design 1. Maintain the comfortable ROMs for the elbow and shoulder Concept 2. Maintain reachability of the right instrument panel with the right finger tips Drawings Design Function IR8 = median of HL5 x 0.5 + [(HL22 + HL24) x cos (HA9 - 90 + SP9 + SB 1 1 + HA6) + HL21 x sin (SP9 + SB 11 + HAN] x sin (HA7) = median of t33.1, 40.9] = 37.0 cm, and IR8 > 0.5 x TW1 = 22.8 cm Design Value IR8 = 13 in. Comment The lateral distance from NLIRP to NRIRP(IL8 + IR8) should be greater than the recommended arm-rest spacing (48.3 - 55.9 cm). B - 57

44. {R9. horizontal distance of NRTRP from NSRP Design Var. IR9. horizontaldistance of NRIRP from NSRP | Classification | Master Related Design TW1. steering wheel diameter Variable (From) SP9. seat pan neutral horizontal angle (5°) SB 1 1. seat back neutral vertical angle (10°) HL5. shoulder pivot width HL8. shoulder pivot to hip pivot Related HL12. horizontal length from hip pivot to SRP (sitting) Anthropometric HL22. forearm link Variable HL24. wrist to finger-grip HA6. shoulder flexion (15°) HA7. shoulder abduction (27.9°) HA9. elbow flexion (60°) Related Design Guideline Key Design maintain the comfortable ROMs for the elbow and shoulder Concept maintain reachability of the right instrument panel with the right finger tips Drawings IR9 = median of [HL21 x sin(SP9 + SB 1 1 + HA6) + (HL22 + HL24) x Design Function cos(HA9 - 90 + SP9 + SB 1 1 + HAN] x cos(HA7) + HL12 x cos (SP9) - HL8 x sin (SP9 + SB 1 1) = median of [38.6, 51.9] = 45.2 cm (range of IR9 = 13.3 cm) Desi~n Value IR9 = 38.1 cm v 1. Assume that the shoulder flexion is 15°and the elbow flexion is 60° when the right Comment arm of a bus operator is on the right instrument panel. 2. The horizontal adjustment range of the right instrument panel (IR6) should be 13.3 cm at least to accommodate the 5th percentile female to the 95th percentile male. B - 58

45. TR]0. vertical distance of NRTRP from NSRP Design Var. | IR10. vertical distal he of NRTRP from NSRP ~ Classification ~Master Related Design SP9. seat pan neutral horizontal angle (5°) Variable (From) SB 1 1. seat back neutral vertical angle (10°) HL8. shoulder pivot to hip pivot HL1 l.vertical length from hip pivot to SRP (sitting) HL12. horizontal length from hip pivot to SRP (sitting) Related HL21. humeral link AnthropometFic HL22. forearm link Variable HL24. wrist to finger-grip HA6. shoulder flexion ( 15°) HA7. shoulder abduction (27.9°) HA9. elbow flexion (60°) Related Design Guideline Key Design 1. Maintain the comfortable ROMs for the elbow and shoulder Concept 2. Maintain reachability of the right instrument panel with the right finger tips Drawings IR10 = median of HL11 x cos(SP9 + SB11) + HL12 x sin (SP9) Design Function + HL8 x cos (SP9 + SB 1 1) + t(HL22 + HL24) x sin (HA9-90+SP9+SB 1 1+HA6) - HL21 x cos (SP9 + SB 1 1 + HA6~] x cos (HA7) = median of [28.4, 32.9] = 30.5 cm (range of IR10 = 4.5 cm) Desian Value IR10 = 30.5 cm 1. Assume that the shoulder flexion is 15°and the elbow flexion is 60° when the right Comment arm of a bus operator is on the right instrument panel. 2. The vertical adjustment range of the right instrument panel (IR7) should be 4.5 cm at least to accommodate the 5th percentile female to the 95th percentile male. B - 59

Next: Appendix C: Computer Simulation for Ergonomic Bus Operator Workstation Design »
Bus Operator Workstation Evaluation and Design Guidelines: Final Report Get This Book
×
MyNAP members save 10% online.
Login or Register to save!
  1. ×

    Welcome to OpenBook!

    You're looking at OpenBook, NAP.edu's online reading room since 1999. Based on feedback from you, our users, we've made some improvements that make it easier than ever to read thousands of publications on our website.

    Do you want to take a quick tour of the OpenBook's features?

    No Thanks Take a Tour »
  2. ×

    Show this book's table of contents, where you can jump to any chapter by name.

    « Back Next »
  3. ×

    ...or use these buttons to go back to the previous chapter or skip to the next one.

    « Back Next »
  4. ×

    Jump up to the previous page or down to the next one. Also, you can type in a page number and press Enter to go directly to that page in the book.

    « Back Next »
  5. ×

    To search the entire text of this book, type in your search term here and press Enter.

    « Back Next »
  6. ×

    Share a link to this book page on your preferred social network or via email.

    « Back Next »
  7. ×

    View our suggested citation for this chapter.

    « Back Next »
  8. ×

    Ready to take your reading offline? Click here to buy this book in print or download it as a free PDF, if available.

    « Back Next »
Stay Connected!