apparent that undergraduate education also must be considered as an integral part of the continuum of education in the United States that extends from pre-kindergarten through the graduate and postdoctoral years. The order in which the vision statements and strategies for implementation are presented in this report reflects that continuum.

Innovative, effective undergraduate SME&T education depends, in part, on having students matriculate at postsecondary institutions who have had sufficient pre-college educational experiences to enable them to undertake college-level work. Therefore, Vision 1 addresses pre-college preparation and the changes that are occurring in K-12 science and mathematics education.

Vision 2 then focuses on the roles and responsibilities of postsecondary faculty and SME&T curricula. Postsecondary faculty add value to students' pre-college educational experiences by making explicit to students the connections among the natural science disciplines and by providing opportunities for students to understand the processes and limits of science through inquiry-based and interdisciplinary approaches to teaching and learning. For science majors, this exposure might often involve participation in undergraduate research.

Next, Vision 3 addresses the importance of designing courses and programs that can be appropriately evaluated for their effectiveness in advancing the learning of SME&T by lower-division undergraduate students.

Vision 4 goes on to address explicitly the needs of two critically important groups of students—undergraduates who enroll in SME&T courses (especially at the introductory level) and who may go on to become teachers of science and mathematics in grades K-12 and practicing teachers of science and mathematics in grades K-12. For too long, the education of future teachers as well as the continuing professional development of current science and mathematics teachers have been viewed by many faculty in SME&T disciplines as primarily the responsibilities of schools of education. Vision 4 calls on faculty in the natural sciences and engineering to become more directly involved in developing integrated approaches to the preparation and continuing professional development of K-12 teachers.

Vision 5 considers the role of institutions in catalyzing change in undergraduate SME&T education through the provision of appropriate rewards and incentives to faculty, creation and support of other institutional resources, such as Teaching and Learning Centers, and assistance to faculty in engaging in appropriate planning for facilities and equipment.

Finally, Vision 6 examines the future of undergraduate SME&T education by considering the role of graduate and postdoctoral education in preparing the next generation of college and university faculty to become skilled teachers. It also addresses the need to support current faculty in learning more about how teaching methods affect student learning.

Many of the specific strategies for implementation in this report expand and build upon the issues articulated in a convocation and subsequent report entitled From Analysis to Action: Undergraduate Education in Science, Mathematics, Engineering, and Technology (National Research Council, 1996a) and in national hearings and the subsequent report entitled Shaping the Future: New Expectations for Undergraduate Education in Science, Mathematics, Engineering, and Technology (National Science Foundation, 1996b). They reflect the ''Year of Dialogue" held across the country by this report's authoring committee with a broad range of postsecondary representatives. Taken together, these implementation strategies could lead to fundamental, systemic improvement in the many facets of undergraduate SME&T education.

The vision statements and their attendant implementation strategies have been provided primarily for those who work directly with undergraduates across the broad spectrum of postsecondary institutions in the United States. Thus, the principles are relevant to community colleges, liberal arts colleges,



The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement