Cover Image


View/Hide Left Panel

relatively Inexpensive products. The third principal use is in the manufacture of other chemicals, such as isopropyl acetate, isopropylamine, diisopropylamine, herbicidal ester, isopropyl xanthate, isopropyl myristate, isopropyl palmitate, isopropyl oleate, aluminum isopropoxide, and isopropyl ether (Wickson, 1968).

Isopropyl alcohol toxicity is of interest to the Navy, because of its presence as an atmospheric contaminant in nuclear submarines.


Table 6 summarizes some data on toxic doses of isopropyl alcohol in animals and man. The International Agency for Research on Cancer has also reviewed toxicity data (IARC, 1977).


The documented toxicity of isopropyl alcohol in man is confined for the most part to accidental ingestion (not inhalation), with a few cases reported in association with rectal and topical application.

Several deaths have reportedly resulted from ingestion of about 1 pint of 70% isopropyl alcohol (Adelson, 1962). Other persons have survived after ingesting similar amounts (Chapin, 1949; Freireich et al., 1967; Juncos and Taguchi, 1968; King et al., 1970). The lethal dose of isopropyl alcohol is estimated as 160–240 ml (Ashkar and Miller, 1971) and 250 ml (McBay, 1973).

In 1978, 372 Melanesian men consumed a solution of 82% methyl alcohol and 18% isopropyl alcohol in the mistaken belief that the solution was methylated spirits; 18 of them died. A disparity was noted in the amount of solution consumed and the sequelae; for example, 100 ml produced blindness and death in one case, but 500 ml seemed to cause no disability in two other men who claimed to have drunk this high quantity (Scrimgeour, 1980). The rates of ingestion were not specified.

Ballard et al. (1975) reported that 15 of 41 persons working in a drug company became ill and had nausea, vomiting, weakness, and abdominal pain. Their illness was attributed to their exposure to carbon tetrachloride and isopropyl alcohol, inasmuch as 13 of the 15 had been within 25 ft of these chemicals when they were spilled.

In two factories manufacturing isopropyl alcohol by the strong-acid process (involving the formation of isopropyl oils as byproducts), an excess risk of cancers of the paranasal sinuses was found (Eckhardt, 1974; Hueper, 1966; Weil et al., 1952). An excess risk of laryngeal cancer may also have been present. However, diisopropyl sulfate, an intermediate substance in the preparation of isopropyl alcohol suspected of being an animal carcinogen, is formed in the strong-acid process.

Zakhari et al. (1977) quoted several studies (Garrison, 1953; Vermeulen, 1966; McFadden and Haddow, 1969; Moss, 1970; Wise, 1969) of coma produced in hospital patients by topical application of isopropyl alcohol during sponge baths intended to reduce fever. Blood isopropyl alcohol concentrations ranged from 10 to 220 mg/100 ml; recovery in all cases was complete in 24–36 h.

The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement