National Academies Press: OpenBook
« Previous: 4. New Initiatives: 1995 to 2015
Suggested Citation:"5. Summary of Technology Development Needs." National Research Council. 1988. Solar and Space Physics: Space Science in the Twenty-First Century -- Imperatives for the Decades 1995 to 2015. Washington, DC: The National Academies Press. doi: 10.17226/755.
×
Page 54
Suggested Citation:"5. Summary of Technology Development Needs." National Research Council. 1988. Solar and Space Physics: Space Science in the Twenty-First Century -- Imperatives for the Decades 1995 to 2015. Washington, DC: The National Academies Press. doi: 10.17226/755.
×
Page 55
Suggested Citation:"5. Summary of Technology Development Needs." National Research Council. 1988. Solar and Space Physics: Space Science in the Twenty-First Century -- Imperatives for the Decades 1995 to 2015. Washington, DC: The National Academies Press. doi: 10.17226/755.
×
Page 56

Below is the uncorrected machine-read text of this chapter, intended to provide our own search engines and external engines with highly rich, chapter-representative searchable text of each book. Because it is UNCORRECTED material, please consider the following text as a useful but insufficient proxy for the authoritative book pages.

5 Summary of Technology Development Needs SOLAR AND HE[IOSPEERIC 1. Solar and heliospheric physics requires in situ plasma measurements from close to the solar surface to the interstellar medium. Conventional propulsion cannot be used for the following orbits: (a) an elliptical orbit for the solar probe with a 1-year pe- riod; (b) a circular or near-circular orbit for the heliosynchronous satellite at 30 solar radii; and (c) at least a 4~km/s velocity for a spacecraft leaving the heliosphere. Solar Electric Propulsion (SEP) or similar methods need de- velopment to have a technology available by 1995. It should be noted here that low-thrust propulsion is also needed for many comet and asteroid rendezvous missions. 2. In connection with spacecraft coming close to the Sun, thermal isolation techniques need to be investigated. For the interstellar probe, one must develop nuclear electric propulsion or a perihelion thruster. 3. Multilayer coating will allow the construction of normal incidence mirrors for the x-ray/ultraviolet and x-ray regime that will result in unprecedented resolution. Present-day techniques are not applicable to large-diameter (about 1 m) mirrors. Active 54

55 mirror surface control techniques and new telescope stabilization methods need to be researched. 4. A Lagrangian platform would be of use to many disciplines. It should be studied In terms of instrument volume, weight, power, and serviceability. MAGNETOSPlIERIC PHYSICS 1. Systems will need to be developed that will allow the plasma populations to be "imaged" so that global models of mag- netospheric structure can be tested directly. 2. The development of radiation-resistant sensors and elec- tronic components that can extend the lifetune of the Jupiter Polar Orbiter mission is needed. 3. In order to be able to deploy a large network of spacecraft to map current systems in the magnetosphere, the costs must be tightly controlled. Cost-reduction techniques should be investi- gated for the development of sunple identical spacecraft. 4. Since the Jupiter Polar Orbiter spacecraft will necessar- ily fly through the jovian ring system, enhanced dust protection techniques will have to be developed. 5. Techniques and systems needed to carry out active plasma physics experiments (interactions of plasmas with waves, beams, gases, and dust) on Shuttle/Spacelab and/or Space Station should be developed.

Next: Appendix A: Workshop on Imaging of the Earth's Mangetosphere »
Solar and Space Physics: Space Science in the Twenty-First Century -- Imperatives for the Decades 1995 to 2015 Get This Book
×
Buy Paperback | $50.00
MyNAP members save 10% online.
Login or Register to save!
Download Free PDF
  1. ×

    Welcome to OpenBook!

    You're looking at OpenBook, NAP.edu's online reading room since 1999. Based on feedback from you, our users, we've made some improvements that make it easier than ever to read thousands of publications on our website.

    Do you want to take a quick tour of the OpenBook's features?

    No Thanks Take a Tour »
  2. ×

    Show this book's table of contents, where you can jump to any chapter by name.

    « Back Next »
  3. ×

    ...or use these buttons to go back to the previous chapter or skip to the next one.

    « Back Next »
  4. ×

    Jump up to the previous page or down to the next one. Also, you can type in a page number and press Enter to go directly to that page in the book.

    « Back Next »
  5. ×

    To search the entire text of this book, type in your search term here and press Enter.

    « Back Next »
  6. ×

    Share a link to this book page on your preferred social network or via email.

    « Back Next »
  7. ×

    View our suggested citation for this chapter.

    « Back Next »
  8. ×

    Ready to take your reading offline? Click here to buy this book in print or download it as a free PDF, if available.

    « Back Next »
Stay Connected!