National Academies Press: OpenBook

Lead in the Americas: A Call for Action (1996)

Chapter: Appendix C: Analytical Methods for Blood Lead Measurement

« Previous: Appendix B: Poster Presentations
Suggested Citation:"Appendix C: Analytical Methods for Blood Lead Measurement." Institute of Medicine. 1996. Lead in the Americas: A Call for Action. Washington, DC: The National Academies Press. doi: 10.17226/9168.
×

APPENDIX C

ANALYTICAL METHODS FOR BLOOD LEAD MEASUREMENT

ROBERT L. JONES*

Lead is one of the most ubiquitous environmental contaminants in the modern world. It is therefore very important that the laboratory and the people collecting the blood lead samples be very aware of the extreme potential for contamination. One of the most important aspects of the laboratory is that the laboratorians must communicate with the people collecting the samples and make them aware of the high potential for contamination. In Expanded Program on Immunization (EPI) studies, if the samples are collected incorrectly, the entire study could be compromised.

In controlled studies it is imperative that the laboratory prescreen the blood sample containers AND the collection devices such as the butterflies, syringes, needles, and the like for lead contamination. If the laboratory cannot prescreen the blood collection devices, then the persons collecting the blood should use “lead-free” collection devices.

Two kinds of whole blood specimens are usually presented to the laboratory —microsamples (capillary or “microtainer,” less than 0.5 ml) and macrosamples (“Vacutainer,” 2 ml or greater). In either case, one key consideration is lot testing of the collection containers themselves, as well as any other devices that directly contact the specimen (for example, needles, cotton gauze swabs, “butterfly” blood collectors, and the like). A copy of the U.S. Centers for Disease Control and Prevention (CDC) procedures for lot testing is available for additional information on lot testing. Microsamples are more likely to clot, and any collected in glass capillaries (not recommended for safety considerations) are inherently more difficult to sample. In all cases it is recommended that whole blood be preserved with EDTA (heparin will work but is more prone to microclots), and shipped and stored at 4°C. The use of filter paper blood collection is not recommended at this time because of the very high potential for environ-

*

Centers for Disease Control and Prevention (CDC), Atlanta, Georgia.

Suggested Citation:"Appendix C: Analytical Methods for Blood Lead Measurement." Institute of Medicine. 1996. Lead in the Americas: A Call for Action. Washington, DC: The National Academies Press. doi: 10.17226/9168.
×

mental contamination and the resulting unacceptable rate of false positives. When the blood is collected, from either a fingerstick or venous, the hands or the arm of the child or adult must be properly washed, and the person collecting the specimen should be wearing powder-free gloves.

There are two main analytical procedures for analyzing the blood, Anodic Stripping Voltammetry (ASV) or Graphite Furnace Atomic Absorption Spectroscopy (GFAAS). GFAAS has been vastly improved by the development of new instruments with microprocessor control; user-friendly, windowed software; capability for automated operation; improved background correction; and improved tube heating. Instruments that use ASV have also been improved, such as the ESA model 3010B, which is easier to use and is more precise and accurate, with lower detection limits than its predecessor. Several key factors should be examined in selecting the appropriate analytical method for your application. These include (but are not limited to): budget, personnel (availability, background, and experience), existing computer climate, throughput (the number of specimens to be processed and reported per unit of time), the need to analyze for elements other than lead, specimen volume available, specimen matrix, and available bench space. Other issues that influence the decision on the analytical method or the instrument manufacturer is the availability of parts and service personnel. Budget considerations are that ASV instruments cost on the order of US$15,000 per unit, and you MUST purchase the reagents from the instrument manufacturer. GFAAS instruments cost US$30,000–60,000 per instrument. Therefore, ASV has a lower initial cost, but has higher reagent costs; GFAAS has a higher initial cost, but lower reagent and gas costs. ASV is manual operation only, whereas GFAAS is normally automated.

Another consideration in determining the method to use is whether there will be totally centralized testing or distributed testing. the ASV instrument is capable of being set up at various sites, whereas the GFAAS instrument is not capable of being moved to multiple locations. The need for a steady supply of Ar gas for the GFAAS is also a consideration.

A supply of “lead-free” reagents and supplies (water, sample cups, pipets, standards, acids, and the like) must be obtained.

A critical component of any blood lead laboratory is the quality assurance (QA) and quality control (QC). Various well-established reference laboratories recommend that the instrument standards be NIST (National Institute of Standards and Technology) traceable. The instrument should be calibrated using multiple standards that cover the appropriate analytical

Suggested Citation:"Appendix C: Analytical Methods for Blood Lead Measurement." Institute of Medicine. 1996. Lead in the Americas: A Call for Action. Washington, DC: The National Academies Press. doi: 10.17226/9168.
×

range. Multiple QC materials should be used (commercially available or NIST traceable) to check each analytical ran. A minimum of two QC materials should be used, a “normal” and an “elevated” value. Numerous blood lead laboratories suggest a “low,” “normal, and “high” QC material at the beginning and at the end of the analytical ran, as well as some periodically throughout the run. Many laboratories will evaluate quality with an internal system (bench and blind QC materials as above), as well as participate in an “external” QA/QC system. Examples of these external systems are the CDC/WI Proficiency Testing (PT) Program, the New York State PT program, The College of American Pathologists PT program, or the CDC lab standardization program (Blood Lead Laboratory Reference System BLLRS). Accuracy in determination of lead in these external programs is often the basis of laboratory certification.

Reporting requirements should be considered. Most of the GFAAS instruments are microcomputer-controlled and would allow for electronic uploading and reporting of data.

Suggested Citation:"Appendix C: Analytical Methods for Blood Lead Measurement." Institute of Medicine. 1996. Lead in the Americas: A Call for Action. Washington, DC: The National Academies Press. doi: 10.17226/9168.
×
This page in the original is blank.
Suggested Citation:"Appendix C: Analytical Methods for Blood Lead Measurement." Institute of Medicine. 1996. Lead in the Americas: A Call for Action. Washington, DC: The National Academies Press. doi: 10.17226/9168.
×
Page 173
Suggested Citation:"Appendix C: Analytical Methods for Blood Lead Measurement." Institute of Medicine. 1996. Lead in the Americas: A Call for Action. Washington, DC: The National Academies Press. doi: 10.17226/9168.
×
Page 174
Suggested Citation:"Appendix C: Analytical Methods for Blood Lead Measurement." Institute of Medicine. 1996. Lead in the Americas: A Call for Action. Washington, DC: The National Academies Press. doi: 10.17226/9168.
×
Page 175
Suggested Citation:"Appendix C: Analytical Methods for Blood Lead Measurement." Institute of Medicine. 1996. Lead in the Americas: A Call for Action. Washington, DC: The National Academies Press. doi: 10.17226/9168.
×
Page 176
Next: Appendix D: Technical Assistance and Information Resources »
Lead in the Americas: A Call for Action Get This Book
×
 Lead in the Americas: A Call for Action
MyNAP members save 10% online.
Login or Register to save!

READ FREE ONLINE

  1. ×

    Welcome to OpenBook!

    You're looking at OpenBook, NAP.edu's online reading room since 1999. Based on feedback from you, our users, we've made some improvements that make it easier than ever to read thousands of publications on our website.

    Do you want to take a quick tour of the OpenBook's features?

    No Thanks Take a Tour »
  2. ×

    Show this book's table of contents, where you can jump to any chapter by name.

    « Back Next »
  3. ×

    ...or use these buttons to go back to the previous chapter or skip to the next one.

    « Back Next »
  4. ×

    Jump up to the previous page or down to the next one. Also, you can type in a page number and press Enter to go directly to that page in the book.

    « Back Next »
  5. ×

    Switch between the Original Pages, where you can read the report as it appeared in print, and Text Pages for the web version, where you can highlight and search the text.

    « Back Next »
  6. ×

    To search the entire text of this book, type in your search term here and press Enter.

    « Back Next »
  7. ×

    Share a link to this book page on your preferred social network or via email.

    « Back Next »
  8. ×

    View our suggested citation for this chapter.

    « Back Next »
  9. ×

    Ready to take your reading offline? Click here to buy this book in print or download it as a free PDF, if available.

    « Back Next »
Stay Connected!