National Academies Press: OpenBook

Mathematical Foundations of High-Performance Computing and Communications (1991)

Chapter: SUMMARY OF THE AREAS WHERE NEW MATHEMATICAL SCIENCES RESEARCH IS NEEDED

« Previous: THE ROLE OF THE MATHEMATICAL SCIENCES IN THE GRAND CHALLENGES
Suggested Citation:"SUMMARY OF THE AREAS WHERE NEW MATHEMATICAL SCIENCES RESEARCH IS NEEDED." National Research Council. 1991. Mathematical Foundations of High-Performance Computing and Communications. Washington, DC: The National Academies Press. doi: 10.17226/9277.
×
Page 27
Suggested Citation:"SUMMARY OF THE AREAS WHERE NEW MATHEMATICAL SCIENCES RESEARCH IS NEEDED." National Research Council. 1991. Mathematical Foundations of High-Performance Computing and Communications. Washington, DC: The National Academies Press. doi: 10.17226/9277.
×
Page 28

Below is the uncorrected machine-read text of this chapter, intended to provide our own search engines and external engines with highly rich, chapter-representative searchable text of each book. Because it is UNCORRECTED material, please consider the following text as a useful but insufficient proxy for the authoritative book pages.

SUMMARY OF THE AREAS WHERE NEW 1\lATHEMATICAL SCIENCES RESEARCH IS NEEDED In order to accomplish the HPCC program and to successfully attack the grand challenges, new mathematical sciences research will be needed, as described in Sections 3 and 4. Although it is very difficult and somewhat presumptuous to identify precisely the most promising and needed research areas, they certainly include the following: . Numerical algorithms, especially multigrid and domain decomposition methods and parallel algorithms, and adaptive mesh generation for partial differential equations, as they arise in modeling semiconductors, geophysics, turbulence, and elsewhere; . Homogenization methods, as they arise in the modeling of oil reservoirs and the atmosphere, in materials science, and in any situation where the range of relevant length scales exceeds our capability to resolve them by brute-force computations; . Dynamic graphics and other visualization methods for addressing high-dimensional data, and high-dimensional surface fitting for process control and product design; . Queueing theory and network flow algorithms to design efficient large-scale communication networks; . Efficient pattern matching (including dynamic programming) for problems in vision, molecular biology, and human-machine voice interactions; . Model validation and assessment of uncertainty based on data from numerical experiments combined with physical experiments or observations, for studying global change, materials science, and many other research areas; Development of user-friendly software for libraries; . Nonlinear wave propagations, both deterministic and random, in communications, geophysical explorations, ocean modeling, and stealth technology; . Numerical methods in nonlinear dynamical systems, as they arise in weather forecasting, climate modeling, and turbulence; and Graph theory, graph embeddings, and network algorithms. 27

This list is by no means exhaustive: inverse problems in geophysics and medicine, large-scale optimization in protein folding and other areas, and complexity theory are just a few of the additional areas that are fundamental to either the HPCC program or the grand challenges. Effective development of the above research areas will also require continued support of the general areas of partial and ordinary differential equations, statistics, computational geometry, control and optimization, and numerical analysis, to the extent that these areas actively interface with the topics itemized above. It is vital that, as the overall research effort in high-performance computing and communications is stepped up, relevant areas of the mathematical sciences also receive commensurate attention and support. 28

Next: REFERENCES »
Mathematical Foundations of High-Performance Computing and Communications Get This Book
×
 Mathematical Foundations of High-Performance Computing and Communications
MyNAP members save 10% online.
Login or Register to save!

READ FREE ONLINE

  1. ×

    Welcome to OpenBook!

    You're looking at OpenBook, NAP.edu's online reading room since 1999. Based on feedback from you, our users, we've made some improvements that make it easier than ever to read thousands of publications on our website.

    Do you want to take a quick tour of the OpenBook's features?

    No Thanks Take a Tour »
  2. ×

    Show this book's table of contents, where you can jump to any chapter by name.

    « Back Next »
  3. ×

    ...or use these buttons to go back to the previous chapter or skip to the next one.

    « Back Next »
  4. ×

    Jump up to the previous page or down to the next one. Also, you can type in a page number and press Enter to go directly to that page in the book.

    « Back Next »
  5. ×

    To search the entire text of this book, type in your search term here and press Enter.

    « Back Next »
  6. ×

    Share a link to this book page on your preferred social network or via email.

    « Back Next »
  7. ×

    View our suggested citation for this chapter.

    « Back Next »
  8. ×

    Ready to take your reading offline? Click here to buy this book in print or download it as a free PDF, if available.

    « Back Next »
Stay Connected!