Cover Image

Not for Sale

View/Hide Left Panel

If the materials are nonregulated, nonexotic substances and there is some idea of their composition, a general characterization can be attempted; however, if the material is totally unknown, there might be additional costs for specialized characterization and disposal. For example, cylinders of unknown gas have to be sampled in such a way that the gas can be characterized, and a specialist might be needed to do it; this could increase the disposal cost greatly.

In summary, research laboratories are unique in the small quantities but varied nature of the waste substances that they produce. In particular, many new materials of unknown toxicity and hazard are created. That makes it difficult to dispose of chemicals in a cost-effective and timely manner. Some facilities have been forced to modify or limit the type of research that they conduct because of the difficulties involved in handling some of the waste generated as a result.1 To alleviate the difficulties posed by the 90-day limit, some research facilities are going to the expense of obtaining a Resource Conservation and Recovery Act (RCRA) Part B permit so that they can continue to store materials beyond this limit.

Barriers to Compliance in a Research Setting

Maintaining compliance with regulations is often difficult for laboratories. Environmental regulations, such as the RCRA, are written for manufacturing facilities and difficult to interpret for a laboratory.

In maintaining compliance, because of the large number of sources within a facility, it is sometimes very difficult to determine which source generated a particular waste. For example, if a facility exceeds a limit (such as a low pH or a metal concentration) at a sampling point in a waste stream, tracing the problem to the source can be expensive and time-consuming, if it is even possible.

Maintaining accurate reports is also difficult, inasmuch as researchers order their chemicals from many places. That makes it hard to keep accurate track of what is on site so that the health and safety staff can provide or obtain environmental-compliance information regarding particular chemicals. Records for radioactive materials almost invariably are better than those for chemicals because the regulatory requirements that apply to radioactive materials are more stringent.

Organizational management and operational incentives in university settings differ from those in manufacturing environments. The culture and structure in a university setting make effective dissemination and enforcement of regulations more difficult. In a university setting, each investigator is a small, independent enterprise, operating quasi-independently.

Some institutions are making efforts to improve their ability to comply with environmental regulations by conducting audits of the laboratories--not just once, but repeatedly in some cases--and developing chemical-tracking systems using bar codes that trace chemicals “ from cradle to grave” within a site.


For example, the University of Illinois at Urbana-Champaign refuses requests for the purchase of radioisotopes in a small number of cases because of the difficulty in handling the wastes that would be produced.

The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement