CONTENTS

 

 

EXECUTIVE SUMMARY

 

13

 1.

 

BACKGROUND

 

15

 2.

 

INTRODUCTION

 

17

   

2.1.  How important is it for the US to lead in Materials Science and Engineering?

 

17

   

2.2.  What is Materials Science and Engineering?

 

18

   

2.3.  What Key Factors Characterize the Field?

 

22

   

2.4.  What is the International Nature of Materials Science and Engineering?

 

23

   

2.5.  What are Some Caveats?

 

23

   

2.6.  Panel Charge and Rationale

 

24

 3.

 

DETERMINANTS OF SCIENTIFIC LEADERSHIP

 

27

   

3.1.  National Imperatives

 

28

   

3.2.  Innovation Process

 

28

   

3.2.1.  Pluralism

 

29

   

3.2.2.  Partnerships

 

29

   

3.2.3.  Regulations

 

30

   

3.2.4.  Professional Societies

 

30

   

3.3.  Major Facilities

 

32

   

3.3.1.  Neutron Scattering Facilities

 

34

   

3.3.2.  Synchrotron Sources

 

35

   

3.3.3.  Nanofabrication

 

37

   

3.3.4.  Computing

 

37

   

3.3.5.  Smaller-scale Facilities

 

38

   

3.4.  Centers

 

38

   

3.5.  Human Resources

 

40

   

3.6.  Funding

 

47

 4.

 

BENCHMARKING RESULTS

 

51

   

4.1.  Approach

 

51

   

4.2.  Assessment of Current Leadership

 

52

   

4.2.1.  Biomaterials

 

52

   

4.2.2.  Ceramics

 

53

   

4.2.3.  Composites

 

54

   

4.2.4.  Magnetic Materials

 

55

   

4.2.5.  Metals

 

57

   

4.2.6.  Electronic and Optical–Photonic Materials

 

58

   

4.2.7.  Superconducting Materials

 

60

   

4.2.8.  Polymers

 

61

   

4.2.9.  Catalysts

 

62



The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement



Below are the first 10 and last 10 pages of uncorrected machine-read text (when available) of this chapter, followed by the top 30 algorithmically extracted key phrases from the chapter as a whole.
Intended to provide our own search engines and external engines with highly rich, chapter-representative searchable text on the opening pages of each chapter. Because it is UNCORRECTED material, please consider the following text as a useful but insufficient proxy for the authoritative book pages.

Do not use for reproduction, copying, pasting, or reading; exclusively for search engines.

OCR for page 9
INTERNATIONAL BENCHMARKING OF US MATERIALS SCIENCE AND ENGINEERING RESEARCH CONTENTS     EXECUTIVE SUMMARY   13  1.   BACKGROUND   15  2.   INTRODUCTION   17     2.1.  How important is it for the US to lead in Materials Science and Engineering?   17     2.2.  What is Materials Science and Engineering?   18     2.3.  What Key Factors Characterize the Field?   22     2.4.  What is the International Nature of Materials Science and Engineering?   23     2.5.  What are Some Caveats?   23     2.6.  Panel Charge and Rationale   24  3.   DETERMINANTS OF SCIENTIFIC LEADERSHIP   27     3.1.  National Imperatives   28     3.2.  Innovation Process   28     3.2.1.  Pluralism   29     3.2.2.  Partnerships   29     3.2.3.  Regulations   30     3.2.4.  Professional Societies   30     3.3.  Major Facilities   32     3.3.1.  Neutron Scattering Facilities   34     3.3.2.  Synchrotron Sources   35     3.3.3.  Nanofabrication   37     3.3.4.  Computing   37     3.3.5.  Smaller-scale Facilities   38     3.4.  Centers   38     3.5.  Human Resources   40     3.6.  Funding   47  4.   BENCHMARKING RESULTS   51     4.1.  Approach   51     4.2.  Assessment of Current Leadership   52     4.2.1.  Biomaterials   52     4.2.2.  Ceramics   53     4.2.3.  Composites   54     4.2.4.  Magnetic Materials   55     4.2.5.  Metals   57     4.2.6.  Electronic and Optical–Photonic Materials   58     4.2.7.  Superconducting Materials   60     4.2.8.  Polymers   61     4.2.9.  Catalysts   62

OCR for page 9
INTERNATIONAL BENCHMARKING OF US MATERIALS SCIENCE AND ENGINEERING RESEARCH  5.   PROJECTION OF LEADERSHIP DETERMINANTS   65     5.1.  Overview   65     5.2.  Attraction of Talented Researchers   66     5.3.  Funding   69     5.4.  Infrastructure   70     5.5.  Cooperative Government-Industrial-Academic Research   72  6.   LIKELY FUTURE POSITIONS   73     6.1.  Introduction   73     6.2.  Biomaterials   73     6.3.  Ceramics   73     6.4.  Composites   74     6.5.  Magnetic Materials   74     6.6.  Metals   74     6.7.  Electronic and Optical–Photonic Materials   75     6.8.  Superconducting Materials   76     6.9.  Polymers   76     6.10.  Catalysts   77  7.   SUMMARY AND CONCLUSIONS   79     7.1.  The United States is among the world leaders in all subfields, the leader in some.   79     7.2.  The flexibility of the enterprise is as much a key indicator of leadership as is the amount of funding.   79     7.3.  The innovation system is a major determinant to US leadership.   80     7.4.  The United States enjoys strength through intellectual and human diversity.   80     7.5.  Shifting federal and industry funding priorities, a potential reduction in access to foreign talent, and deteriorating materials research facilities may curtail the ability of the United States to capitalize on leadership opportunities.   80  8.   REFERENCES   83  9. APPENDIX A:   PANEL AND STAFF BIOGRAPHICAL INFORMATION   87  10. APPENDIX B:   BENCHMARKING RESULTS TABLES   93  11. APPENDIX C:   HOT TOPICS LIST   109

OCR for page 9
INTERNATIONAL BENCHMARKING OF US MATERIALS SCIENCE AND ENGINEERING RESEARCH FIGURES, TABLES, and BOXES  Figure 2.1:   Inter-relationships among materials categories,   20  Figure 3.1:   Number of materials science and engineering PhDs awarded, 1986-1995,   40  Figure 3.2:   Employment status of PhD materials scientists in the US,   41  Figure 3.3:   Metallurgical/materials engineering graduate students in all institutions, by race/ethnicity and citizenship, 1993,   45  Figure 3.4:   All engineering graduate students in all institutions, by race/ethnicity and citizenship, 1993,   45  Figure 3.5:   All science graduate students in all institutions, by race/ethnicity and citizenship, 1993,   45  Figure 3.6:   Federal R&D Budget by Materials Class, in millions of US dollars,   47  Figure 3.7:   National Science Foundation Division of Materials Research budget, 1990-1998, millions of dollars,   49  Figure 3.8:   National Science Foundation Directorate for Mathematical & Physical Sciences, average annualized award size, competitive research grants, 1992-1996, thousands of dollars,   50  Figure 3.9:   National Science Foundation Division of Materials Research, permanent equipment budget, 1990-1996, millions of dollars,   50  Figure 4.1:   Papers submitted and accepted for Magnetism and Magnetic Materials ' annual conferences, 1989-1996,   56  Figure 5.1:   Scientists and engineers admitted to the US on permanent visas by labor certification, 1990-1994,   67  Figure 5.2:   Foreign Citizen Graduate Enrollment in Science and Engineering in the United States, 1983-1993,   67  Table 3.1:   Major Scientific Awards for, or Strongly Influenced by, Neutron Scattering Research,   33  Table 3.2:   Research Reactors, US,   34  Table 3.3:   Research Reactors, Abroad,   34  Table 3.4:   Spallation Sources, US,   35  Table 3.5:   Spallation Sources, Abroad,   35  Table 3.6:   Synchrotron Light Source, Operations in G7 Countries,   36  Table 3.7:   Employment Status of Doctorates in Materials Science and Engineering in the US,   42  Table 3.8:   Occupation Status of Doctorates in Materials Science and Engineering in the US,   43  Table 3.9:   Number of Doctorate Recipients by Gender and Subfield,   46  Table 3.10:   Percentage of First Degrees in Science and Engineering to Women among G-6 Nations,   46  Table 3.11:   Federal R&D Budget for Materials Research by Agency, in millions of US dollars,   48  Table 5.1:   Decline in the Admissions into the US of Immigrant Scientists and Engineers from FY 1993 to FY 1994,   68  Box 2.1:   Classes of Materials,   21  Box 3.1:   The Federation of Materials Societies,   30  Box 3.2:   International Union of Materials Research Societies,   31  Box 3.3:   The MOSIS Service,   37

OCR for page 9
INTERNATIONAL BENCHMARKING OF US MATERIALS SCIENCE AND ENGINEERING RESEARCH  Box 3.4:   A Cure for Composites,   38