Below are the first 10 and last 10 pages of uncorrected machine-read text (when available) of this chapter, followed by the top 30 algorithmically extracted key phrases from the chapter as a whole.

Intended to provide our own search engines and external engines with highly rich, chapter-representative searchable text on the opening pages of each chapter.
Because it is UNCORRECTED material, please consider the following text as a useful but insufficient proxy for the authoritative book pages.

Do not use for reproduction, copying, pasting, or reading; exclusively for search engines.

OCR for page 190

l
Inclustrial and Government
Laboratories
1 ~
A significant number of industrial and government laboratories
support research and educational activity in the mathematical sci-
ences. Accurate and comprehensive data on the extent and character
of this support are, however, almost completely lacking. In order to
garner preliminary information on the basis of which a rough
assessment could be made and more systematic surveys might be
undertaken in the future, COSRIMS and the CBMS Survey Committee
jointly sponsored a Panel on the Mathematical Sciences in Industry
and Government.
This Panel invited statements regarding their mathematical re-
search and educational activities from a sample of industrial and
government laboratories where such activities were known infor-
mally to be substantial. Those from which responses were received
included the following:
Argonne National Laboratory
Bell Telephone Laboratories
Bettis Atomic Power Laboratory (Westinghouse Corporation)
Boeing Scientific Research Laboratories
David Taylor Model Basin
International Business Machines Corporation
Lockheed Palo Alto Research Laboratory
Los Alamos Scientific Laboratory
MITRE Corporation
Mobil Oil Corporation
National Bureau of Standards
190

OCR for page 190

Industrial and Government Laboratories
Pacific Northwest Laboratory (Battelle Memorial Institute)
RAND Corporation
Sandia Corporation Laboratory
191
The strength and variety of mathematical activities exhibited in
the responses of these selected laboratories is no doubt considerably
greater than in industrial and government laboratories generally.
ACTIVITIES AT SOME MA TOR LABORATORIES
Activities at the above-listed laboratories in support of mathemati-
cal research and higher education are quite varied and in some
instances surprisingly extensive. Industrial laboratories have some-
times made developmental grants in the sciences to institutions of
higher education and, occasionally, grants-in-aid directly to depart-
ments of mathematics. They have also on occasion endowed dis-
tinguished chairs of mathematics in universities. Activities of these
kinds are certainly valuable and deserve to be applauded and en-
couraged. The main contribution of industrial and government
laboratories to the mathematical sciences lies, however, in their
own in-house research and education efforts, and in the interplay
of these with work in universities. The proportion of PhD's to total
staff in the mathematical sciences at such laboratories is generally
much lower than in a university. Naturally an attempt is made to
appoint PhD's whose research interests will fit in with those of the
laboratory, but, once appointed, such a PhD will normally be given
very considerable freedom in his research activities. Direct consult-
ing on company problems typically plays a relatively minor role,
and sell-initiated basic research may play a very considerable one.
In this way there is direct support of mathematical research on the
part of industrial and government laboratories, and top mathe-
maticians from these laboratories are among frequent contributors
of mathematical research articles and monographs.
At their best, the physical facilities and general conditions of
work in these laboratories can be quite attractive. Technical
libraries and library services tend to be good, and there are usually
active in-house seminars and colloquia in various branches of the
mathematical sciences. Provision is frequently made for bringing in
distinguished university mathematicians as consultants and research
collaborators, for periods varying from a day or two to several weeks

OCR for page 190

192
Level and Forms of Support
or a full summer or year. In the other direction, the laboratory may
give a year's leave of absence to a distinguished mathematician on
its staff when he is invited to serve as a visiting professor at a uni-
versity. In such a case, the laboratory may supplement his uni-
versity salary. The laboratory may also provide released time to its
mathematical scientists for teaching individual graduate courses at
nearby universities.
Several industrial and government laboratories have attractive
fellowship programs under which selected employees may study
part time for PhD degrees in the mathematical sciences at neighbor-
ing universities. These programs will often provide for a year's
leave of absence, at three-fourths to full pay, to work on a disserta-
tion. The over-all magnitude of such programs is modest but not
negligible. Thus the CBMS survey found that, for academic year
1965-1966, out of some 1,570 federal and private fellowships for
full-time graduate study in the mathematical sciences, approxi-
mately 55 were sponsored by industry, through not all of these were
fellowships for employees.
There are also laboratory-supported programs of graduate mathe-
matical education for employees at somewhat lower levels. In one
strongly research-oriented industrial laboratory it is standard prac-
tice for incoming bachelors in engineering and in mathematics to
take, as part of their work for the company, a two- to three-year
half-time educational program. Some of the courses are taught in
extension programs at the laboratory itself, but part of the work is
conducted at nearby universities and normally leads to a master's
degree. The program for engineering bachelors is heavily weighted
in the direction of mathematics, while the program for mathe-
matics bachelors generally includes intensive work with com-
puters.
THE GENERAL SITUATION AND ITS PROBLEMS
The above paragraphs have depicted qualitatively, at their present
best, an enlightened attitude toward mathematical-research activ-
ities among a few major industrial and government laboratories
and a healthy interaction between these activities and those of the
mathematical-science departments of universities. It would be quite
misleading, however, not to emphasize that this enlightened attitude
and healthy interaction appear to be far from the norm.

OCR for page 190

Industrial and Government Laboratories
193
Many applied mathematicians feel that industrial and govern-
ment laboratories have generally failed to use mathematicians effec-
tively and, what is worse, are unable to imagine or evaluate the
mathematician's contribution. Informal interviews with numerous
mathematicians in technologically sophisticated industries suggest
that the majority of these mathematicians are in a kind of limbo
in their companies. Some industrial mathematicians are vigorous in
asserting that management does not use, or know how to use, their
services. Too many industrial mathematicians are regarded as
"mathematical repairmen," people kept around to "fix mathe-
matics that is breaking down" but in activities of a rather routine
nature.
Partly, the problem is one of communicating effectively, so that
the mathematical talent within an industrial organization can be
brought to bear on its mathematical problems. Many "applied
mathematics sections" in industry have failed because this problem
was not solved. On the other hand, when a company tries to
"sprinkle" its mathematicians throughout the organization, com-
munication lines tend to be very localized, and each mathematician
is unrealistically expected to be a jack of all trades. Continued fail-
ure to solve such extremely difficult problems threatens to impede
the effective use of mathematicians in industry for years to come.
There is also a problem of lack of communication and cooper-
ation between the academic world and industrial and government
laboratories. Quite a few industrial and applied mathematicians
feel that the academic world is content with this situation, and that
by and large universities are making little effort to prepare mathe-
maticians for positions outside universities. This is a principal
reason for our recommendation below for increased exchanges be-
tween laboratories and universities.
COMMENTS
We feel that more young mathematicians could be profitably drawn
toward the work of industrial and government laboratories; thus
we recommend that a special effort be made to increase the oppor-
tunities for postdoctoral research appointments in such laboratories.
Specifically, a group of cooperating industries might undertake to
support postdoctorals and to evaluate applications for postdoctoral
appointments to industrial laboratories on a national basis through

OCR for page 190

194
Level and Forms of Support
a committee of the National Research Council. At the same time
we recommend an increased reverse flow of more senior mathe-
maticians from industrial and government laboratories to univer-
sities on a temporary basis; we feel that such laboratories should be
encouraged to send personnel to universities for a year or two after
several years of work in the laboratory. In this connection, we call
attention to the desirability of extending more senior postdoctoral
opportunities to industrial personnel. The advantages of using more
industrial personnel in graduate teaching and research direction
should also be recognized. This should be encouraged, either as a
form of industrial support of the universities or as a program sup-
ported by a combination of government and university resources.
We point out the desirability of studies leading to more accurate
and comprehensive information on work in the mathematical sci-
ences in industry and government, including present and projected
manpower estimates at various levels of mathematical training. The
qualitative picture drawn in the discussion of Activities at Some
Major Laboratories (page 191) has emerged from case studies of a
few of the country's major industrial and government laboratories.
A more comprehensive study should include all these laboratories
and the changing picture of mathematical work in industry and
government generally. In particular, it should take account of the
smaller mathematical consulting firms now springing up, firms that
contract with a variety of industrial and commercial customers to
do computer programming and systems analyses and mathematical
operations-and-management studies.