means building new ideas upon their current understandings. In both cases, the result is proposed new knowledge. For example, students may use observational and other evidence to propose an explanation for the phases of the moon; for why plants die under certain conditions and thrive in others; and for the relationship of diet to health.

  1. Learners evaluate their explanations in light of alternative explanations, particularly those reflecting scientific understanding. Evaluation, and possible elimination or revision of explanations, is one feature that distinguishes scientific from other forms of inquiry and subsequent explanations. One can ask questions such as: Does the evidence support the proposed explanation? Does the explanation adequately answer the questions? Are there any apparent biases or flaws in the reasoning connecting evidence and explanation? Can other reasonable explanations be derived from the evidence?

    Alternative explanations may be reviewed as students engage in dialogues, compare results, or check their results with those proposed by the teacher or instructional materials. An essential component of this characteristic is ensuring that students make the connection between their results and scientific knowledge appropriate to their level of development. That is, student explanations should ultimately be consistent with currently accepted scientific knowledge.

  2. Learners communicate and justify their proposed explanations. Scientists communicate their explanations in such a way that their results can be reproduced. This requires clear articulation of the question, procedures, evidence, proposed explanation, and review of alternative explanations. It provides for further skeptical review and the opportunity for other scientists to use the explanation in work on new questions.

    Having students share their explanations provides others the opportunity to ask questions, examine evidence, identify faulty reasoning, point out statements that go beyond the evidence, and suggest alternative explanations for the same observations. Sharing explanations can bring into question or fortify the connections students have made among the evidence, existing scientific knowledge, and their proposed explanations. As a result, students can resolve contradictions and solidify an empirically based argument.

Taken as a whole, these essential features introduce students to many important aspects of science while helping them develop a clearer and deeper knowledge of some particular science concepts and processes. The path from formulating scientific questions, to establishing criteria for evidence, to proposing, evaluating,



The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement