fought in settings such as cities and towns, with vaguely identified combatants who will involve large numbers of civilians in their campaigns. The fighting of the future is also likely to involve terrorists and guerrilla interdictions as opposed to highly visible armies, and will be fought by small groups of combatants over shorter time periods with smaller numbers of casualties at any point in time. Because of the likely locations of these conflicts, evacuation by air may be difficult or impossible. As a result, immediate and even ongoing treatment of casualties may be significantly extended. As a consequence, lifesaving medical treatment may well come from a fellow combatant instead of a medic—both of whom are included in the term first responders as used in this report. Thus, the therapies used in the field may vary depending on the time frame from the injury to medical evacuation, the skills and resources of the first responder, and the field site of combatant injury. The availability of fluids of the appropriate volume and physiologic effect in the field may play a part in the provision of lifesaving treatments given the time frame from the injury to medical evacuation and the availability of care after initial resuscitation.

Thus, it is reasonable to conclude that there is a definite subset of battlefield combatants who now die of hemorrhagic shock but who are potentially salvageable with timely battlefield interventions (e.g., fluid resuscitation). As defined by the committee, fluid resuscitation is a treatment regimen involving fluid replacement that is intended to minimize the effects of hemorrhagic shock and to stabilize the hemodynamic response to trauma and hypovolemia. The report focuses on fluid resuscitation of the combat casualty, where a casualty is defined as a combatant who has been physically injured. The committee defines shock as a condition of inadequate tissue perfusion and inadequate removal of cellular waste products, leading to subsequent failure of oxidative metabolism. Shock may result from defects in (1) delivery, (2) transport, or (3) utilization of oxygen, or combinations of all three. Shock is described in greater detail in Chapter 2. To understand the issues involved in saving the lives of combat casualties it is useful to examine the historical developments in fluid resuscitation.

Figure 1-2

Time from injury to death of battlefield casualties.

Source: Adapted from Bellamy (1984, 1987a,b, 1995).

The National Academies of Sciences, Engineering, and Medicine
500 Fifth St. N.W. | Washington, D.C. 20001

Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement