On the basis of the work described above and related supporting work, the addition of crystalloids, either as saline or as a balanced salt solution, became the standard of care in the Vietnam conflict and resulted in a significant reduction in the rate of renal failure. Extremely high volumes were used in the care of severe casualties in a naval facility near Danang and highlighted the pulmonary problems in nonthoracic trauma which required prolonged respirator therapy and intensive care stays. The syndrome was popularly referred to as "Danang lung," "shock lung," or "traumatic wet lung" and was later labeled "acute respiratory distress syndrome.'' It had occasionally been noted in World War II and was described under the name of "congestive atelectasis'' by Jenkins and colleagues (1950). Overhydration was the most frequently cited etiology. Although high-volume crystalloid infusion lowered the rate of posttraumatic renal failure, spared the use of blood or blood products from being the more exclusive resuscitation tools, and was successful in resuscitation, some adverse consequences were identified, pertaining to the complexity of distinguishing the process of resuscitation from the delayed effects of the shock situation. For example, high-volume fluid resuscitation in patients with shock can result in cell injury and fluid retention within the cell. Moreover, the capillary leak syndrome has been shown to have consequences from other types of resuscitation (e.g., crystalloid), including albumin, which will cross the cell membrane, and be retained within the cell, increasing wet-lung consequences.

Concern over the frequency and severity of this problem led to a conference conducted by the Committee on Trauma, Division of Medical Sciences, of the National Research Council on February 29, 1968. Numerous theories of the etiology of this problem were discussed, including fat embolism, oxygen toxicity, changes in surfactant, infection, overhydration, and vasoactive agents. A description of a final common pathway emerged: damage to the pulmonary capillaries permitted loss of proteinaceous material into the pulmonary parenchyma. Since then, observations on the etiology and treatment of acute respiratory distress syndrome have been helpful in reducing the rates of morbidity and mortality, but fluid volume remains a key consideration in the development of an effective resuscitation approach.

Although many researchers have compared casualties in the inner city to those that occur on the battlefield, those that occur on the battlefield are very different. The primary difference is that the vast majority of combat injuries are penetrating, whereas those in the civilian sector are blunt. Furthermore, in combat, penetrating wounds are caused not by bullets but by shrapnel from explosive munitions. This is compounded by the fact that evacuation in a combat setting, as opposed to the civilian sector, is not rapid and rarely transports a casualty to a setting where true definitive care can be administered. (It should also be recognized that the injuries in naval operations are still different again, in that the majority of these come from blasts, bums, and inhalation [Bellamy, 1984, 1987a,b, 1995; Ordog et al., 1984].)

The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement