The committee found that there are at least theoretical disadvantages to existing resuscitation fluids (although these fluids are rarely questioned in clinical practice) and that many have not been modified for several decades. Still, both laboratory and clinical information demonstrated that some new protocols may reduce the rate of mortality among injured combatants on the battlefield. The committee concluded that new protocols for the fluid resuscitation of battlefield casualties should be implemented immediately and makes the following re-commentation:

Recommendation: The initial fluid resuscitation of the hemorrhaging battlefield casualty should be a 250 ml bolus of 7.5 percent hypertonic saline delivered by a rapid-infusion system. (Recommendation 5.2)

Systemic administration of hypertonic saline solution would take place via an intraosseous needle placed in the anterior tibia, even through the uniform if necessary. The fluid bag would be placed under manual low pressure or attached to a simple and durable pump, which could be mechanical or electric. The option for intravenous access should also be provided, but the committee felt that it would be easier to teach nonmedical combatants the intraosseous route. The committee also noted that fluid resuscitation is only one component of the immediate care of the battlefield casualty. Fluid resuscitation is predicated on the control of bleeding and improvements in fluid therapy will be most effective when they are accompanied by improvements in management of the airway and ventilation in the field, and by rapid evacuation of the injured individual to a site where definitive care can be initiated by trained clinicians.

Even though the administration of hypertonic saline would be an improvement over current protocols, new resuscitation fluids should be developed and tested. Such fluids should address the metabolic and cellular consequences of traumatic shock and the potential disadvantages of existing fluid formulations. Future research directed at acute treatment of massive blood loss on the battlefield should explore the development of an improved resuscitation fluid. Ideally, such a fluid would provide adequate control of pH, partial CO2 pressure/bicarbonate ratio, the phosphorylate potential, the redox state, and osmotic pressure; adequate control of sodium chloride, calcium, and potassium levels; and adequate control of the lactate and pyruvate ratio. Although the large volume of lactated Ringer's solution that is required for resuscitation in the field is simply not currently compatible with the expected functions of the first responder, who is both combatant and medic in most situations, evidence from a variety of sources suggests that modifications to lactated Ringer's solution might be of value, and the committee proposes that these be explored.

Recommendation: Research involving modifications of existing lactated Ringer's solutions could include:



The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement