Page 134

orbital location of the planets 100 years from now can be predicted with considerable precision. While prediction is often possible, however, in many cases it is difficult, impossible, or irrelevant. This may be true because of incomplete causal knowledge, system complexity, insufficient data about current conditions, the engagement of reflective humans in the system, or combinations of all of these factors. Some physical systems are inherently chaotic. At least within broad boundaries, their future performance can not be known. Social systems add another level of complication. People react to their environments. Their preferences and values change, in part because of what they experience, in part because of what their imperfect efforts to look into the future have revealed to them. People and their organizations act strategically, based on what they think others may do in response to different interpretations of the future. Since many of these reactions cannot be predicted, over time they impose progressively more serious limits on our ability to see the shape of possible futures.

Even when the future performance of a system can only be described in the most general terms, however, "what if" analysis can be useful. Such analysis can help societies to explore what contingencies they may face, determine how well they are prepared to deal with those contingencies, and identify indicators for which they should be watchful. If we can find ways to generate a range of plausible alternative futures, we can use them to evaluate different behavioral strategies for their likely efficacy and robustness in the face of a range of alternatives, and for how easily these strategies can be adapted to deal with unanticipated developments.

Efforts to structure and discipline our thinking about future possibilities in the light of present knowledge and intentions may therefore have an important role to play in shaping strategies for a sustainability transition. This chapter explores various approaches that have been used to explore the future toward addressing sustainability concerns. It seeks to evaluate their respective strengths and weaknesses as tools to aid in navigating a sustainability transition, to illustrate the sorts of insights that can emerge from their use, and to identify priorities for improving their performance and practical utility.

Strategies for Exploring the Future

Strategies for using science to explore possible futures in policy contexts may be evaluated on at least four criteria: scientific credibility, political legitimacy, practical utility, and effectiveness.1

Scientific credibility: Such analytic strategies can make systematic but skeptical use of available scientific knowledge in laying out not only the likely conditions that might be encountered ahead, but also the pos-

The National Academies of Sciences, Engineering, and Medicine
500 Fifth St. N.W. | Washington, D.C. 20001

Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement