National Academies Press: OpenBook
« Previous: References
Suggested Citation:"Appendix A: Funding Levels." National Research Council. 1999. Strategies to Protect the Health of Deployed U.S. Forces: Force Protection and Decontamination. Washington, DC: The National Academies Press. doi: 10.17226/9717.
×
Page 179
Suggested Citation:"Appendix A: Funding Levels." National Research Council. 1999. Strategies to Protect the Health of Deployed U.S. Forces: Force Protection and Decontamination. Washington, DC: The National Academies Press. doi: 10.17226/9717.
×
Page 180
Suggested Citation:"Appendix A: Funding Levels." National Research Council. 1999. Strategies to Protect the Health of Deployed U.S. Forces: Force Protection and Decontamination. Washington, DC: The National Academies Press. doi: 10.17226/9717.
×
Page 181

Below is the uncorrected machine-read text of this chapter, intended to provide our own search engines and external engines with highly rich, chapter-representative searchable text of each book. Because it is UNCORRECTED material, please consider the following text as a useful but insufficient proxy for the authoritative book pages.

Appendices

Appendix D Evaluating Skin Decontamination Techniques Howard I. Malbach and Hongbo Zha li Both in vitro and in vivo techniques have been developed to determine skin decontamination. A brief introduction to the models and a summary of the relative data from recent studies follows. The models described below have been developed with nonvesicant agents that are available for occupational and home use. IN VITO DECONTAMINATION MODEL Wester et al. (1991) tested the extent and rate of decontamination on rhesus monkeys. A water-soluble chemical, glyphosate, was completely removed from rhesus monkey skin with three successive soap and water or water only washes. Approximately 90-percent of the glyphosate was removed in the first wash. There was no difference between washing with soap and water and washing with water only. AlachIor, a lipid- soluble chemical, was also removed by washing with soap and water and water only. In contrast to glyphosate, however, more alachIor was removed with soap and water than with water alone. Although the first alachIor washing removed most of the chemical, successive washings contributed to overall decontamination. Methylene bispheny! isocyanate, an industrial chemical, is a potent contact sensitizer. Decontamination potential was determined in vivo in rhesus monkeys. A and of I-cm areas was drawn on the abdomen of the monkey (the same can be done with humans) and the same amount of chemical applied to all areas. At set times, individual grid areas were washed/decontaminated by water-only, 5-percent soap, 50-percent soap, polypropylene glycol, polypropylene glycol cleaner, and corn oil. After each washing procedure, skin tape stopping was used to quantify residual contamination. Water-only and soap-and-water washing were minimally effective. Polypropylene glycol, polypropylene glycol cleaner, and corn of} were more effective. The chemical that was not removed by the washing procedures was recovered in the tape stepping (Wester and Maibach, 1999a). Two factors affect in vivo skin decontamination: (~) the "rubbing effect" that removes loose surface stratum corneum from natural skin desquamation, and (2) the "solvent effect," which is related to chemical lipophilicity and may influence the washing effects (Wester et al., 1991~. van Hooidonk et al. (1983) evaluated a wide variety of common materials as skin decontaminants against chemical agents. Flour followed by wet tissue paper removed 93 percent of VX and 98 percent of mustard. This treatment also reduced the penetration of The following material was prepared for the use of the principal investigators of this study. The opinions and conclusions herein are the authors' and not necessarily those of the National Research Council. 180

Appendix A Funding Levels for Fiscal Years 1996 2000 for the Joint Service Chemical/Biological Defense Program For limited distribution to: Government Personnel and Contractors To obtain copies contact: Office of the Special Assistant for Gulf War Illnesses Four Skyline Place 5113 Leesburg Pike, Suite 901 Falls Church, VA 22041-3204 Phone: 703-578-8500 181

Next: Appendix B: Textiles and Garments for Chemical and Biological Protection »
Strategies to Protect the Health of Deployed U.S. Forces: Force Protection and Decontamination Get This Book
×
Buy Paperback | $75.00 Buy Ebook | $59.99
MyNAP members save 10% online.
Login or Register to save!
Download Free PDF

Since Operation Desert Shield/Desert Storm, Gulf War veterans have expressed concerns that their postdeployment medical symptoms could have been caused by hazardous exposures or other deployment-related factors. Potential exposure to a broad range of CB and other harmful agents was not unique to Gulf operations. Hazardous exposures have been a component of all military operations in this century. Nevertheless, the Gulf War deployment focused national attention on the potential, but uncertain, relationship between the presence of CB agents in theater and symptoms reported by military personnel. Particular attention has been given to the potential long-term health effects of low-level exposures to CB agents.

In the spring of 1996, Deputy Secretary of Defense John White met with the leadership of the National Academies to discuss the DoD's continuing efforts to improve protection of military personnel from adverse health effects during deployments in hostile environments. Although many lessons learned from previous assessments of Operation Desert Shield/Desert Storm have been reported, prospective analyses are still needed. Strategies to Protect the Health of Deployed U.S. Forces: Force Protection and Decontamination, which addresses the issues of physical protection and decontamination, is one of four initial reports that will be submitted in response to that request.

Specifically, this report includes a review and evaluation of the following areas:

  • the adequacy of current protective equipment and protective measures (as well as equipment in development)
  • the efficacy of current and proposed methods for decontaminating personnel and equipment after exposures to CB agents
  • current policies, doctrine, and training to protect and decontaminate personnel and equipment in future deployments (i.e., major regional conflicts [MRCs], lesser regional conflicts [LRCs], and operations other than war [OOTWs])
  • the impact of equipment and procedures on unit effectiveness and other human performance factors
  • current and projected military capabilities to provide emergency response
  1. ×

    Welcome to OpenBook!

    You're looking at OpenBook, NAP.edu's online reading room since 1999. Based on feedback from you, our users, we've made some improvements that make it easier than ever to read thousands of publications on our website.

    Do you want to take a quick tour of the OpenBook's features?

    No Thanks Take a Tour »
  2. ×

    Show this book's table of contents, where you can jump to any chapter by name.

    « Back Next »
  3. ×

    ...or use these buttons to go back to the previous chapter or skip to the next one.

    « Back Next »
  4. ×

    Jump up to the previous page or down to the next one. Also, you can type in a page number and press Enter to go directly to that page in the book.

    « Back Next »
  5. ×

    To search the entire text of this book, type in your search term here and press Enter.

    « Back Next »
  6. ×

    Share a link to this book page on your preferred social network or via email.

    « Back Next »
  7. ×

    View our suggested citation for this chapter.

    « Back Next »
  8. ×

    Ready to take your reading offline? Click here to buy this book in print or download it as a free PDF, if available.

    « Back Next »
Stay Connected!