Page 83

tellectually stimulating challenges for researchers, and to promote significant advances in the state of technology," according to the report (p. 7).

Research topics suggested in the report include communications resources such as rapidly deployable, self-configuring wireless networks for coordinating response teams; "judgment support" tools to assist crisis managers in making decisions in the absence of complete, reliable information; simulations of phenomena such as hurricanes and fires that could deliver useful results to crisis managers rapidly; and virtual "anchor desks" that would place network-based resources such as simulations and information systems at the disposal of crisis managers.

The steering committee developed 11 findings based on input from the workshops and additional, related information. The findings have a number of common themes. One is that some of the greatest technical challenges stem from the sheer scale (i.e., numbers of people and devices, diversity of resources, amount of computing power, complexity of interactions) of the requirements that must be met. Another theme is that the technologies must be easy enough to use to complement the users rather than distract them from their missions.

The report observes that the widespread interconnection of computing and information resources has made it feasible, and increasingly common, for resources to be called on in unforeseen ways. "Crisis management, in particular, illustrates the value of being able to integrate highly diverse resources whose usefulness in an unusual situation could not have been anticipated in advance. Unfortunately, technologies developed to meet a specific application requirement often do not function well in unforeseen circumstances because of complex, difficult problems of interoperation, performance, and scaling up," the report notes (p. 6). Consequently, the steering committee's findings suggest R&D and deployment efforts that can lead to both architectural approaches for systems that function on a national scale and general-purpose tools and services that facilitate rapid, ad hoc integration of systems and resources.

In developing the findings, the steering committee identified several characteristics of crisis management that place particular stress on adoption and exploitation of advanced information technologies:

Magnitude. Crises can overwhelm available resources. For example, communications systems, power plants, hospital systems, and weather centers can all be saturated in a crisis. How can systems be developed that have "surge capacity" or that can respond usefully while in a saturated state?

Urgency. Rapid response in communication and information services to the special loads of crises is essential. It can lead, for example, to communication architectures that provide priority service for crisis man-

The National Academies of Sciences, Engineering, and Medicine
500 Fifth St. N.W. | Washington, D.C. 20001

Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement