Cover Image


View/Hide Left Panel
Evolution of the Closed Carpel

The closed carpel is the one major feature that separates the angiosperms from other vascular seed plants. The closure most often is complete and entirely seals off the unfertilized ovules from the outside environment. Suggestions that this provided protection for the vulnerable ovules from beetles or other herbivores have been proposed as a reason for the closure of the carpel. However, I think that the closure of the carpel may be more directly related to the evolution of the bisexual flower (Dilcher, 1995). During the evolution of the flower, as the male and female organs of the flower were brought into proximity, the need for protection against self-fertilization was so important that biochemical and mechanical barriers were developed very early in flowering plant ancestors. The mechanical barrier is the closed carpel and the biochemical barrier is the incompatibility systems that developed to prevent the successful growth of pollen tubes. Some living angiosperms have loosely closed carpels or lack any firm closure at all. It has been suggested that these have sufficient exudates to fill the carpel opening so that the carpel has a biochemical barrier against self-fertilization (Endress, 1994).

Although the closed carpel is the fundamental strategy for preventing self-pollination, the addition or loss of sepals, petals, and stamens must have been important events ensuring outcrossing. It is reasonable to assume that the development of attractive colored organs and nectaries, the clustering together of female (ovule-bearing) organs and male (pollen-bearing) organs, and, finally, the association of the female and male organs together on the same axis were all changes designed to increase the effectiveness of insect pollination. The closed carpel and biochemical incompatibility are natural early steps that followed or took place at the same time as the evolution of the floral features just mentioned. The closed carpel in a showy flower ensured outcrossing by animal pollinators while increasing pollen exchange with bisexual flowers. The closed carpel serves as a plant's control mechanism to guarantee that outcrossing happens. Any mechanical protection it offered probably always has been of secondary importance and can be easily overcome by insects.

Evolution of Floral Form and Patterns

Radial symmetry. The floral organs of all early angiosperms are radially symmetrical, a symmetry exhibited by all of the floral organs and flowers whether they are small or large, unisexual or bisexual. The earliest known angiosperm flowers suggest that individual carpels were borne

The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement