to an earlier family of mines named Destructors. Quickstrike can use two variable-influence target detection devices to detect submarines and surface ships. The Target Detection Device (TDD) Mk 57 uses a magnetic/ seismic sensor. The Target Detection Device Mk 58 uses a magnetic/ seismic/pressure sensor. Both detection devices were approved for production in the early 1980s. The Quickstrike design emphasizes ease of maintenance, preparation, and use. The mines will either sterilize or self-destruct at the end of life. The Target Detection Device Mk 71 was approved for production in 1995 and uses a magnetic/seismic/pressure sensor. While the earlier devices use hard-wired algorithms with programmable sensitivities, this device is fully programmable for algorithms and sensitivities.

Mines - Quickstrike (US) Mine Mk 62 and Mine Mk 63.

The Quickstrike Mine Mk 62 and Mk 63 are air-delivered bottom mines that use General Purpose Low-Drag Bombs Mk 82 and Mk 83 (500 and 1,000 pounds, respectively) as the explosive payload. Because a specialized kit is used to convert bombs into mines, demand for magazine space on aircraft carriers is dramatically reduced. These mines use either the Target Detection Device Mk 57 or, when available, the Target Detection Device Mk 71. Arming takes place at a pre-set time after the mine enters the water.

Mines - Quickstrike (US) Mine Mk 65.

The Quickstrike Mine Mk 65 is a thin-wall, 2,000-pound air-delivered bottom mine. The mine may use either the Target Detection Device Mk 57, Target Detection Device Mk 58, or, when available, the Target Detection Device Mk 71. Arming takes place at a pre-set time after the mine enters the water.

Mines - Submarine Launched Mobile Mine (SLMM) (US) Mk 67

The Submarine Launched Mobile Mine (SLMM) Mk 67 is a modified Torpedo Mk 37 with a thin-wall mine warhead. It is delivered by submarine and is considered a clandestine mine. SLMM may use either the Target Detection Device Mk 57, or, when available, the Target Detection Device Mk 71. It is a shallow water, bottom mine that detects submarines and surface ships. The mine will either sterilize or self-destruct at the end of life. SLMM is launched from a submarine as a torpedo. After running to a pre-selected location, the torpedo motor shuts down and the weapon sinks to the bottom. Arming takes place at a pre-set time or distance after the torpedo run period.

Mines - Improved Submarine Launched Mobile Mine (ISLMM) (US)

The Improved Submarine Launched Mobile Mine is based on converting existing Mk48 torpedoes into mines. It features dual mine sections (warheads) to increase submarine mine laying capacity and has improved compatibility with the SSN-688 submarine fire control systems. In addition, ISLMM will have a multiple waypoint turn capability and greater range than the current SLMM, significantly increasing the number of minefields that can be planted by submarine.

Mines - Target Detection Device Mk 71

A mine Target Detection Device is the electronic fuse that observes changes in the environment in order to detect ships and submarines and decide whether the target is close enough to damage. Current bottom mines (Quickstrike and SLMM) use a TDD Mk 57 (TTD57), which is a magnetic/seismic device designed specifically for Cold War targets, such as large combatants and submarines on or near the surface. The Quickstrike Mk 65 can also use the TDD Mk 58 (TDD58), which is a magnetic/seismic/pressure device. The TDD57 and TDD58 are in the U.S. Navy's service inventory and are the only sensor/detection packages for bottom mines. The TDD Mk 71 (TDD71) is a programmable device capable of responding to emerging threats, such as quiet diesel-electric submarines, mini-submarines, fast patrol boats, and air cushioned vehicles. It adds an enhanced pressure sensor and has the capability to respond to remote control signals. The TDD71 is designed for use in all Quickstrike-series mines, SLMM, or Improved SLMM.

MMS -

Marine Mammal System



The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement