Kao, S., H. McDonald, and W. Wilson. 1998. Usefulness of virial coefficients in protein crystal growth, presented at the 7th International Conference on the Crystallization of Biological Macromolecules, Granada, Spain.

Kaysen, J.H., W.C. Campbell, R.R. Majewski, F.O. Goda, G.L. Navar, F.C. Lewis, T.J. Goodwin, and T.G. Hammond. 1999. Select de novo gene and protein expression during renal epithelial cell culture in rotating wall vessels is shear stress dependent, J. Membr. Biol. 168: 77-89.

Köhler, S., C.F. Delwiche, P.W. Denny, L.G. Tilney, P. Webster, R.J.M. Wilson, J.D. Palmer, and D.S. Roos. 1997. A plastid of probable green algal origin in apicomplexan parasites , Science 275: 1485-1488.

Koszelak, S., J. Day, C. Leja, R. Cudney, and A. McPherson. 1995. Protein and virus crystal growth on international microgravity laboratory , Biophys. J. 69: 13-19.

Lewis, Marian L., and Millie Hughes-Fulford. 1997. Cellular responses to spaceflight, pp. 21-39 in Fundamentals of Space Life Sciences, Vol. 1, Susanne E. Churchill (ed.). Malabar, Florida: Krieger Publishing Company.

Malakoff, David. 1999. A $100 billion orbiting lab takes shape. What will it do? Science 2 84: 1102-1108.

McPherson, A., A.J. Malkin, Y.G. Kuznetsov, S. Koszelak, M. Wells, G. Jenkins, J. Howard, and G. Lawson. 1999. The effects of microgravity on protein crystallization: Evidence for concentration gradients around growing crystals, J. Cryst. Growth 196: 572-586.

Moore, D., and A. Cogoli. 1996. Gravitational and space biology at the cellular level, pp. 1-106 in Biological and Medical Research in Space, D. Moore, P. Bie, and H. Oser (eds.). New York: Springer.

National Aeronautics and Space Administration (NASA). 1995. NASA, NIH sign agreement on biomedical research, Space Technology Innovation 3: 5.

National Aeronautics and Space Administration (NASA), Office of Life and Microgravity Sciences and Applications, Human Exploration and Development of Space (HEDS) Enterprise. 1997. Microgravity Biotechnology: Research and Flight Experiment Opportunities , NRA-97-HEDS-02. Washington, D.C.: NASA.

National Research Council (NRC). 1995. Microgravity Research Opportunities for the 1990s. Washington, D.C.: National Academy Press.

National Research Council (NRC). 1997. Future Materials Science Research on the International Space Station . Washington, D.C.: National Academy Press.

National Research Council (NRC). 1998. A Strategy for Research in Space Biology and Medicine in the New Century. Washington, D.C.: National Academy Press.

National Research Council (NRC). 1999. Institutional Arrangements for Space Station Research. Washington, D.C.: National Academy Press.

Reichhardt, T. 1998. Biologists recommend scrapping NASA's research on crystals, Nature 394: 213.

Searby, Nancy D., Gordana Vunjak-Novakovic, and Javier de Luis. 1998. Design and development of a space station cell culture unit, presented at the Session on Environmental Considerations in Microgravity Flight Implementation II at the International Conference on Environmental Systems, Danvers, Mass.

Smith, G.D., E. Ciszak, and W. Pangborn. 1996. A novel complex of a phenolic derivative with insulin: Structural features related to the T->R transition, Protein Sci. 5: 1502-1511.

Snell, E.H., S. Weisgerber, J.R. Helliwell, E. Weckert, K. Holzer, and K. Schroer. 1995. Improvements in lysozyme protein crystal perfection through microgravity growth, Acta Crystallogr. D51: 1099-1102.

Unsworth, Brian R., and Peter I. Lelkes. 1998. Growing tissues in microgravity, Nature Medicine 4: 901-907.

Volkman, B.F., M.J. Nohaile, N.K. Amy, S. Kustu, and D.E. Wemmer. 1995. Three-dimensional solution structure of the N-terminal receiver domain of NtrC, Biochemistry 34: 1413-1424.

The National Academies of Sciences, Engineering, and Medicine
500 Fifth St. N.W. | Washington, D.C. 20001

Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement