National Academies Press: OpenBook

Spacecraft Maximum Allowable Concentrations for Selected Airborne Contaminants: Volume 4 (2000)

Chapter: B6 Perfluoropropane and Other Aliphatic Perfluoroalkanes

« Previous: B5 Methylhydrazine
Suggested Citation:"B6 Perfluoropropane and Other Aliphatic Perfluoroalkanes." National Research Council. 2000. Spacecraft Maximum Allowable Concentrations for Selected Airborne Contaminants: Volume 4. Washington, DC: The National Academies Press. doi: 10.17226/9786.
×

B6

Perfluoropropane and Other Aliphatic Perfluoroalkanes

Chiu-Wing Lam, Ph.D., D.A.B.T.

Johnson Space Center Toxicology Group

Medical Operations Branch

Houston, Texas

PHYSICAL AND CHEMICAL PROPERTIES

Perfluoropropane (PFA3, octafluoropropane) is gaseous at room temperature. It is colorless and odorless. Some physical characteristics are as follows:

Formula:

CF3CF2CF3

CAS no.:

76-19-7

Synonyms:

Freon 218, FC-218, PF 5030 3M Performance Fluid

Molecular weight:

188.08

Boiling point:

–37°C

Vapor pressure:

114.8 psia at 21°C (3M 1995a)

Solubility in water:

Extremely low

Conversion factors:

1 ppm = 7.68 mg/m3

 

1 mg/m3 = 0.13 ppm (at 25°C)

OCCURRENCE AND USE

When compressed, gaseous PFA3 is easily condensed into liquid. PFA3 is currently used as a secondary coolant in refrigerators aboard the Russian space-station Mir. According to Russian toxicologists, if all the PFA3 were to escape from the cooling system into the Mir cabin, the cabin concentration could reach 5000 mg/m3 (G.I.Solomina and L.N.Mouakhamedieva, Institute of Biomedical Problems, Moscow, personal commun., 1996). PFA3 is not used in the U.S. space program, and to our knowledge, astronauts have not been exposed to

Suggested Citation:"B6 Perfluoropropane and Other Aliphatic Perfluoroalkanes." National Research Council. 2000. Spacecraft Maximum Allowable Concentrations for Selected Airborne Contaminants: Volume 4. Washington, DC: The National Academies Press. doi: 10.17226/9786.
×

PFA3 in U.S. spacecraft. However, NASA has joined the Russian Space Agency in using the Mir space station. Mir-18 was the first mission that involved a U.S. astronaut living onboard the Russian spacecraft. For this mission, the cabin air samples showed that PFA3 was the trace contaminant present in the highest concentration; its concentrations in Mir ranged from 20 to 48 mg/m3 (Limero 1995).

TOXICOKINETICS AND METABOLISM

Toxicokinetics

PFA3 is practically insoluble in water (3M 1995a). The air/blood/liver/fat partition coefficients (PCs) of PFA3 were 1/0.25/0.07/0.04 (Creech et al. 1995), as determined by the vial equilibration method of Gargas et al. (1986). For solubility comparison, the corresponding PCs of chloroform, determined by the same method, were 1/20.8/21.1/203 (Gargas et al. 1989). Those data suggest that at the same airbrone exposure concentration, the blood, liver, and fat would take up, respectively, 83, 300, and 5000 times more chloroform than PFA3 when the equilibrium is reached. Theoretical predictions showed that concentrations of very low water-soluble, volatile compounds in body water would approach steady state within 1 hof exposure (Goldstein 1974).

Metabolism

Perfluoroalkanes (PFAs) are very stable. They are not oxidized even by ozone to any appreciable extent; their atmospheric half-life greater than 5000 y (R.G. Perkins, 3M Company, personal commun., 1995). Creech et al. (1995) detected no increases in fluoride in urine of rats exposed to 1% PFA3 for 4 h.

TOXICITY SUMMARY

PFA3 is a low-molecular-weight PFA. PFAs are chemically inert; included in this family is Teflon (a polymeric, high-molecular-weight PFA). The major concern from exposure to high concentrations of gaseous PFAs is their potential for cardiac toxicity. Cardiac effects are known to occur when humans or animals are exposed to high concentrations of other fluorinated hydrocarbons (FCs), including Freons (Table 6-1). FCs, such as chlorofluorocarbons, could induce cardiac arrhythmias by sensitizing the heart to epinephrine (Aviado and

Suggested Citation:"B6 Perfluoropropane and Other Aliphatic Perfluoroalkanes." National Research Council. 2000. Spacecraft Maximum Allowable Concentrations for Selected Airborne Contaminants: Volume 4. Washington, DC: The National Academies Press. doi: 10.17226/9786.
×

Micozzi 1981; Hanig and Herman 1991). The inertness of PFAs has attracted few attempts to investigate the toxic properties of these compounds. Only a few unpublished toxicological studies on PFA3 and other PFAs were found; none of them were conducted with human subjects. These studies revealed that PFAs are very low in toxicity (McHale 1972; 3M 1993a,b, 1995a,b,c) (Table 6-2). At very high concentrations, PFA3 could indeed induce cardiac effects (3M 1993a). However, the concentrations of PFA3 that produce cardiac effects are substantially higher than those of other halogenated compounds that are not fully fluorinated. A survey of the literature on fluorine-containing alkanes reveals that substituting fluorine for chlorine or hydrogen atoms in an FC decreases the compound's toxicity, including cardiac toxicity (Table 6-1).

CNS toxicity that could impair cognitive performance is another concern associated with exposures to high concentrations of relatively biologically inert FCs (e.g., bromotrifluoromethane (NRC 1984a)). The extremely low solubility of PFA3 in water, blood, and tissues would imply that the PFA3 concentration in the brain would be low. Any CNS toxicity in humans due to PFA3, if it occurs, would likely manifest at only very high concentrations. That is likely to be true for other PFAs also. These speculations are indeed supported by the findings that rats exposed to 80% PFA1, PFA2, or PFA3 experienced only minimal effects (initial hyperactivity followed by hypoactivity (see Table 6-2)).

Suggested Citation:"B6 Perfluoropropane and Other Aliphatic Perfluoroalkanes." National Research Council. 2000. Spacecraft Maximum Allowable Concentrations for Selected Airborne Contaminants: Volume 4. Washington, DC: The National Academies Press. doi: 10.17226/9786.
×

TABLE 6-1 Acute Inhalation Toxicity of Selected Fluorinated Alkanes

Compound

Namea

Exposure, ppm × time

Toxicity in Rats

Epinephrineb + Exposure (ppm)

Cardiac Toxicity in Dogs

References

CFCl3

FC 11

26,220 × 4 h

LC

5000

Lowest concentration that elicited a marked response

NRC 1984b

CFCl2H

FC 21

50,000 × 4 h

LC

10,000

Affected 2/12 dogs

NRC 1984c

CF2ClH

FC 22

300,000 × 2 h

LC

50,000

Effects observed

ACGIH 1991a

CF2Cl2

FC 12

620,000 × 3 h

LC

80,000

EC50

NRC 1984d

CF3Br

FC1301

560,000 × 1 h

Mild-to-moderate CNS effects

200,000

EC50

McHale 1972

CF4

FC 14 (PFA1)

780,000 × 1 h

Mild effects

600,000

Very mild effect

McHale 1972

CF3CCl3

FC 113

50,000 × 4 h

LC

5000

EC:20-35%

NRC 1984e

CF3CFCl2

FC 114

600,000 × 2 h

LC

45,000

EC50

NRC 1984f

CF3CF2Cl

FC 115

800,000 × 4 h

No clinic signs

150,000

Affected 1/13 dog

ACGIH 1991b

CF3CF3

FC 116 (PFA2)

800,000 × 1 h

Very mild CNS effects, no deaths

McHale 1972

CF3CF2CF3

FC 218 (PFA3)

800,000 × 1 h

Very mild CNS effects, no deaths

400,000

1/8 dog: definite positive response; 1/8 dog: weak response

McHale 1972 3M 1993a

CF3(CF2)2CF3

(PFA4)

800,000 × 1 h

No toxic signs, no deaths

400,000

No effects

3M 1995a

CF3(CF2)3CF3

(PFA5)

280,000 × 4 h

No effects, no deaths

3M 1993a

CF3(CF2)4CF3

(PFA6)

381,000 × 1 h

No clinical signs, no pathological changes or deaths

170,000

No or very mild effects

3M 1995b

a PFAs are abbreviations for perfluoroalkanes used in this document.

b Pretreated with epinephrine before inhalation exposure to the compound.

LC, lethal concentration; EC, effect concentration; EC50 = concentration that produces an effect on 50% of exposed animals.

Suggested Citation:"B6 Perfluoropropane and Other Aliphatic Perfluoroalkanes." National Research Council. 2000. Spacecraft Maximum Allowable Concentrations for Selected Airborne Contaminants: Volume 4. Washington, DC: The National Academies Press. doi: 10.17226/9786.
×

TABLE 6-2 Toxicity Summary of Perfluoroalkanes

PFAs

Exposure Concentration

Exposure Length

Animals

Effects

Reference

PFA1

80%

1 h

10 rats

Initial hyperactivity followed by hypoactivity, hyperemia

McHale 1972

 

22.6%

10 d (24 h/d)

20 rats, 20 guinea pigs

No clinical signs, no macroscopic or microscopic lesions

McHale 1972

 

20% or 60%

6 dogs/group (epinephrine-sensitized)

Occasional preventricular contractions in three of the six dogs exposed to 60%

McHale 1972

PFA2

80%

1 h

10 rats

Initial hyperactivity followed by hypoactivity, hyperemia

McHale 1972

 

12.1%

10 d (24 h/d)

20 rats, 20 guinea pigs

No clinical signs, no macroscopic or microscopic lesions

McHale 1972

PFA3

80%

1 h

10 rats

Initial hyperactivity followed by hypoactivity, hyperemia

McHale 1972

 

11%

4 h

10 rats

No clinical signs, no macroscopic and microscopic lesions

3M 1993a

 

11.3%

10 d (24 h/d)

20 rats, 20 guinea pigs

No clinic signs, no microscopic lesions

McHale 1972

 

5%, 10%, 20%, 30%, and 40%

6 dogs/group (epinephrine-sensitized)

1 positive cardiac response (multiple and multifocal ectopic beats), 1 weak positive response in the eight 40%-exposed dogs; no effects at ≤ 30%

3M 1993a

PFA4

9.8% and 79%

4 h

10 rats/group

No clinical signs, no macroscopic or microscopic lesions

3M 1993b

 

5%, 10%, 20%, 30%, or 40%

6-8 dogs/group (epinephrine-sensitized)

No cardiac effects

3M 1993b

PFA6

38% (saturated vapor)

1 h

Rats

No clinical signs, no deaths; necropsy showed no gross pathological changes

3M 1995b

Suggested Citation:"B6 Perfluoropropane and Other Aliphatic Perfluoroalkanes." National Research Council. 2000. Spacecraft Maximum Allowable Concentrations for Selected Airborne Contaminants: Volume 4. Washington, DC: The National Academies Press. doi: 10.17226/9786.
×

PFAs

Exposure Concentration

Exposure Length

Animals

Effects

Reference

PFA6

30.5%

30 exposures, 7 h/d, 5 d/w

26 rats

Some clinical chemistry and hematological variables differed slightly from those of control rats, but were within biologically acceptable ranges; no macroscopic or microscopic lesions

3M 1995a

 

5%

2 w (6 h/d, 5 d/w)

20 rats

No clinical signs; no macroscopic lesions

3M 1995a

 

0.5%, 1.5%, or 5%

90 d (6 h/d, 5 d/w)

10 rats/group

No clinical signs; some clinical chemistry and hematological variables differed slightly from those of control rats, but were within biologically acceptable ranges; no macroscopic or microscopic lesions

3M 1995a

 

5%, 10%, or 17.5%

6 dogs/group (epinephrine-sensitized)

No cardiac toxicity

3M 1995a

Suggested Citation:"B6 Perfluoropropane and Other Aliphatic Perfluoroalkanes." National Research Council. 2000. Spacecraft Maximum Allowable Concentrations for Selected Airborne Contaminants: Volume 4. Washington, DC: The National Academies Press. doi: 10.17226/9786.
×
Acute Exposures
General Toxicity

McHale (1972) evaluated the acute toxicity of inhaled perfluoromethane (PFA1), perfluoroethane (PFA2), and PFA3. Three groups of male rats (10 per group) were exposed for 1 h to 80% (target concentration) of these PFAs (with 20% oxygen) (Table 6-2). Two additional groups of rats were exposed to either air (control) or 56% bromotrifluoromethane (also with 20% oxygen). Bromotrifluoromethane, a compound of known toxicity, was used for comparison. During the exposures, all animals exposed to the PFAs exhibited initial hyperactivity and subsequent hypoactivity, hyperemia (redness of skin), and closed eyes. Rats exposed to bromotrifluoromethane also exhibited initial hyperactivity and subsequent hypoactivity, but also showed increases in respiration rate, abdominal breathing, slight-to-moderate ataxia (incoordination), and a slight bluish tint to the skin. All animals seemed normal during the 14-d post-exposure observation period, and none died. A study by the 3M Company (3M 1993a) on 10 rats (5 males, 5 females) exposed to 11% PFA3 for 4 h showed neither deaths nor clinical signs. Necropsy of these animals after a 15-d observation period revealed some lung congestion in one rat. Microscopic pathological examination of lungs, liver, and kidneys showed no abnormalities in any of the PFA-exposed rats.

The higher molecular-weight PFAs also showed little or no biological activity even at high exposure concentrations. Groups of 10 rats (5 males, 5 females) were exposed to 9.8% or 79% perfluorobutane (PFA4) for 4 h or to 38.1% perfluorohexane (PFA6) for 1 h; neither deaths nor pharmacotoxic signs were observed during the exposure or during the 14-d post-exposure period. Necropsy revealed no gross pathological changes (3M 1993a, 1995c). Microscopic findings on animals exposed to PFA4 showed no abnormalities. No information was provided regarding whether tissues of rats exposed to PFA6 were examined microscopically.

Cardiac Effects

Cardiac sensitization was assessed in a study in which dogs (six to eight per group) were pretreated with epinephrine and exposed either to 5%, 10%, 20%, 30%, or 40% PFA3. One definite positive cardiac response (multiple and multifocal ectopic beats) and one questionable (weak) response were observed among the eight dogs exposed to 40% PFA3 (3M 1993a). However, exposures to PFA4 at the same concentrations produced no cardiac abnormalities (3M

Suggested Citation:"B6 Perfluoropropane and Other Aliphatic Perfluoroalkanes." National Research Council. 2000. Spacecraft Maximum Allowable Concentrations for Selected Airborne Contaminants: Volume 4. Washington, DC: The National Academies Press. doi: 10.17226/9786.
×

1993b). No cardiac effects were observed in any of the dogs exposed to 5%, 10%, or 17.5% PFA6 after being injected with epinephrine (3M 1995c). Trichlorofluoromethane at 2%, used as a positive control, elicited 100% cardiac response in the dogs in all three 3M cardiac-sensitization studies. McHale (1972) also assessed cardiac sensitization in beagles injected intravenously with epinephrine (8 µg/kg) and exposed to 20% PFA1 (80% air) or 60% PFA1 (40% O2). No cardiac arrhythmias were observed; the only responses were occasional preventricular contractions in three of the six dogs exposed to 60% PFA1. These results showed that PFAs have very low cardiac-sensitizing activity.

Short-Term and Subchronic Exposures

McHale (1972) conducted a 10-d continuous (24 h/d) exposure study with PFA1, PFA2, PFA3, or bromotrifluoromethane. Each exposure group consisted of 10 male and 10 female rats, and 10 male and 10 female guinea pigs. The average analytical concentrations were 20.6% (PFA1), 12.1% (PFA2), 11.3% (PFA3), and 5.1% (bromotrifluoromethane). Parameters studied included toxicity signs, clinical chemistry, hematology, gross pathology of all organs, microscopic histopathology of selected organs (lungs, liver, heart, kidneys, and spleen), organ weights, and organ-to-body-weight ratios of these organs and adrenals.

No overt signs of toxicity were present during the exposures. Clinical chemistry data were unremarkable. Hematological examinations of rats and guinea pigs revealed elevation of total leukocyte counts in some PFA-exposed groups (Table 6-3). However, all groups had pneumonitis and associated inflammation that could easily account for the mild elevation in leukocyte counts. Moreover, the elevation of leukocyte counts was not statistically significant for all three PFAs, and not considered an adverse effect of these compounds. Gross pathology showed no lesions associated with any particular group. Histopathological findings also revealed no differences between the FC-exposed animals and the controls.

Another inhalation study was conducted with two groups of rats (10 males and 10 females per group) exposed to either air or 10% PFA4 for 2 w (6 h/d; 5 d/w) (3M 1993b). A similar study was also conducted with 5% PFA6 (3M 1995c). Clinical observations, body and organ weight measurements, and gross pathological examination were conducted. No deaths or exposure-related effects were observed for either compound except for a small increase in liver weight of the female rats and in kidney weight of the male rats in the PFA6-exposed group. Microscopic examination showed no difference between the exposed and control groups. 3M also conducted an inhalation study with 26 rats (16 males, 10 females) given 30 exposures (7h/d, 5 d/w) to ''near-satu-

Suggested Citation:"B6 Perfluoropropane and Other Aliphatic Perfluoroalkanes." National Research Council. 2000. Spacecraft Maximum Allowable Concentrations for Selected Airborne Contaminants: Volume 4. Washington, DC: The National Academies Press. doi: 10.17226/9786.
×

rated" (30.5%) PFA6 vapor (3M 1995c). Mortality, abnormal weight patterns, and gross pathological changes were not observed. Microscopic examination of the lung and liver showed no significant histopathological changes. Blood chemistry revealed that some of the parameters in exposed animals were different from those of control animals. However, according to 3M, all of these blood results were within biologically acceptable ranges. A 90-d inhalation study (6 h/d, 5 d/w) conducted with groups of 10 rats (5 males, 5 females) exposed to 0, 5000, 15,000, or 50,000 ppm PFA6 produced no exposure-related deaths. Clinical signs were normal. Minor differences in several hematological and clinical-chemistry variables were observed, but according to 3M (1995b), the values from the exposed animals were within normal limits and were not considered toxicologically significant. Histopathological examination showed no exposure-related histological changes.

Genotoxicity

Vapors of PFA3, PFA4, PFA5, or PFA6 were tested for their potential mutagenic activity on Salmonella typhimurium (strains TA1535, TA1537, TA1538, TA98, and TA100) in the presence or absence of liver enzymes. The concentrations tested were 80% for PFA3 and PF4 and near-saturated vapors (> 10%) for PFA5 and PFA6. No mutagenic activity was observed (3M 1993a, b, 1995b, c). These results are not surprising given the extremely low water solubility and chemical inertness of these compounds.

EXPOSURE LIMITS

Exposure Limits Set by Other Organizations

No exposure limits have been established for any PFAs by any organization in the United States, including 3M, the manufacturer of the products. The Russian Space Agency has set a maximum allowable concentration for PFA3 of 150 mg/m3 (G. I. Solomina and L. N. Mouakhamedieva, Institute of Biomedical Problems, Moscow, personal commun., 1996).

Nasa Spacecraft Maximum Allowable Concentrations (SMACs)

SMACs are derived in accordance with guidelines developed by the SMACs subcommittee of the Committee on Toxicology (NRC 1992). The SMACs (Table 6-3) are set by choosing the lowest values among the ACs (see Table 6-4).

Suggested Citation:"B6 Perfluoropropane and Other Aliphatic Perfluoroalkanes." National Research Council. 2000. Spacecraft Maximum Allowable Concentrations for Selected Airborne Contaminants: Volume 4. Washington, DC: The National Academies Press. doi: 10.17226/9786.
×

TABLE 6-3 Spacecraft Maximum Allowable Concentrations (SMACs) of Perfluoropropane

Exposure Duration

Concentration, ppm

Concentration, mg/m3

Target Toxicity

1 h

11,000

85,000

CNS effects

24 h

11,000

85,000

CNS effects

7 d

11,000

85,000

CNS effects

30 d

11,000

85,000

CNS effects

180 d

11,000

85,000

CNS effects

RATIONALE FOR ACCEPTABLE CONCENTRATIONS (ACS) FOR EXPOSURES

ACs Based on the CNS Effects of the Acute Exposure Studies

PFA3 is not metabolized. The brain is a richly and fast-perfused organ. Thus, the CNS effects of PFA3 would be due solely to PFA3 concentration in the brain. For a given exposure concentration, the blood concentration of PFA3 would likely approach a steady state within 60 min, and the concentration in the brain will follow the blood in a comparable time. Thus, the possible CNS effects induced by PFA3 would be independent of exposure length of ≤ 60 min. Thus, one AC value is set for all exposure durations.

McHale (1972) reported that a 1-h exposure of rats to 80% PFA3 resulted in only mild CNS responses. 3M reported that a 4-h exposure of rats to 11% PFA3 caused no clinical signs (3M 1993a). An AC of 1.1% is obtained by applying an animal-to-human extrapolation safety factor of 10 to the NOAEL of 11%.

ACs Based on Cardiac Effects

The heart, like the brain, is also a richly and fast-perfused organ. For the reasons presented above, one AC value could be set for all exposure durations. 3M (1993a) has reported that no cardiac effects were observed in epinephrine-treated dogs exposed to 30% PFA3. Therefore, using an uncertainty factor of 10 to account for interspecies variability, the AC is set at 3% (30% ÷ 10). The space factor of 5 is not used here because the epinephrine-treated dog model is a conservative test, and epinephrine is probably associated with cardiac arrhythmias observed in humans.

Suggested Citation:"B6 Perfluoropropane and Other Aliphatic Perfluoroalkanes." National Research Council. 2000. Spacecraft Maximum Allowable Concentrations for Selected Airborne Contaminants: Volume 4. Washington, DC: The National Academies Press. doi: 10.17226/9786.
×
ACs Based on Subchronic Animal Exposure Data

McHale (1972) showed that continuous inhalation exposure of rats to 11.3% PFA3 for 10 d (24 h/d) produced neither clinical signs nor microscopic lesions. Using an uncertainty factor of 10 for interspecies variability, ACs for 7 d, 30 d, and 180 d of exposure are set at 1.1% (11.3% ÷ 10). The AC derived from various toxicity end points are summarized in Table 6-4. The SMACs are set by choosing the lowest values among these ACs.

Suggested Citation:"B6 Perfluoropropane and Other Aliphatic Perfluoroalkanes." National Research Council. 2000. Spacecraft Maximum Allowable Concentrations for Selected Airborne Contaminants: Volume 4. Washington, DC: The National Academies Press. doi: 10.17226/9786.
×

TABLE 6-4 Acceptable Concentrations of PFA3

End Point, Exposure Data, Reference

 

Uncertainty Factors

Acceptable Concentrations, ppm

Species

Time

Species

Spaceflight

1 h

24 h

7 d

30 d

180 d

CNS effects

Rat

1

10

11,000

11,000

11,000

11,000

11,000

NOAEL, 11% (3M 1993a)

 

 

 

 

 

 

 

 

 

Cardiotoxicity

Dog

1

10

1a

30,000

30,000

30,000

30,000

30,000

NOAEL, 30% (3M 1993a)

 

 

 

 

 

 

 

 

 

Subchronic toxicity

Rat

1

10

NS

NS

11,000

11,000

11,000

NOAEL, 11.3% (McHale 1972)

 

 

 

 

 

 

 

 

 

SMACs

 

 

 

 

11,000

11,000

11,000

11,000

11,000

—, not applicable.

NS, not set.

aSee text for explanation of not using the spaceflight factor 5.

Suggested Citation:"B6 Perfluoropropane and Other Aliphatic Perfluoroalkanes." National Research Council. 2000. Spacecraft Maximum Allowable Concentrations for Selected Airborne Contaminants: Volume 4. Washington, DC: The National Academies Press. doi: 10.17226/9786.
×
SMACs for Other Volatile Perfluoroalkanes

As discussed above, PFAs have extremely low solubility in water and are biologically inert and extremely low in toxicity. No evidence exists to suggest that increasing or decreasing the molecular weight of these compounds drastically changes their toxicity. Therefore, the SMACs for the other straight-chain PFAs are set at the same values as those of PFA3. A survey of perfluorocyclobutane toxicity indicates that this cyclic PFA is more cardiotoxic than the aliphatic PFAs discussed in this document. The generalization about the toxicity of aliphatic PFAs would not be applicable to the cyclic PFAs. Therefore, the SMACs set for PFAs in this document would not be applicable to cyclic PFAs.

ACKNOWLEDGMENTS

The author is grateful to Dr. Henry Trochimowicz of Haskell Laboratory (du Pont de Nemours & Co.), and Dr. Roger Perkins of 3M for kindly providing several unpublished reports.

REFERENCES

ACGIH. 1991a. Chlorodifluoromethane. Pp. 282-283 in Documentation of the Threshold Limit Values and Biological Exposure Indices, 6th Ed. American Conference of Governmental Industrial Hygienists, Cincinnati, Ohio.

ACGIH. 1991b. Chloropentafluoroethane. Pp. 297-298 in Documentation of the Threshold Limit Values and Biological Exposure Indices, 6th Ed. American Conference of Governmental Industrial Hygienists, Cincinnati, Ohio.

Aviado, D.M., and M.S. Micozzi. 1981. Fluorine-containing organic compounds. Pp. 3071-3115 in Patty's Industrial Hygiene and Toxicology, Vol. II B, 3th Ed. G.D. Clayton and F.E. Clayton, eds. New York: John Wiley & Son.


Creech, J.R., R.K. Black, S.K. Neurath, M.C. Caracci, R.J. William, and G.W. Jepson.. 1995. Inhalation Uptake and Metabolism of Halon 1301 Replacement Candidates, HFC 227, HFC-125, and FC-218. Interim Report: AL/OE-TR-1995-0022. Occupational and Environmental Health Directorate, Toxicology Division, Armstrong Laboratory, Wright-Patterson Air Force Base, Dayton, Ohio.


Gargas, M.L. M.E. Andersen, and H.J. Clewell III. 1986. A physiologically based simulation approach for determining metabolic constants from gas uptake data. Toxicol. Appl. Pharmacol. 86:341-352.

Gargas, M.L., R.J. Burgess, D.E. Voisard, G.H. Cason, and M.E. Anderson. 1989. Partition coefficients of low-molecular-weight volatile chemicals in various liquid and tissues. Toxicol. Appl. Pharmacol. 98:87-99.

Goldstein, A., L. Aronow, and S.M. Kalman. 1974. The time course of drug action.

Suggested Citation:"B6 Perfluoropropane and Other Aliphatic Perfluoroalkanes." National Research Council. 2000. Spacecraft Maximum Allowable Concentrations for Selected Airborne Contaminants: Volume 4. Washington, DC: The National Academies Press. doi: 10.17226/9786.
×

Pp. 338-355 in Principles of Drug Action, 2nd Ed. New York: John Wiley & Sons.

Hanig, J.P., and E.H. Herman. 1991. Toxic responses of the heart and vascular systems. Pp. 442 in Casarett and Doull's Toxicology: The Basic Science of Poison, 4th Ed. M.O. Amdur, J. Doull, and C.D. Klaassen, eds. New York: Pergamon.


Limero, T. 1995. Analysis of Mir-18 Flight Samples. An internal memo to John James, NASA Toxicology Monitor. Toxicology Laboratory, KRUG Life Sciences, Houston, Tex.


McHale, E.T. 1972. Final Technical Report on Habitable Atmospheres Which Do Not Support Combustion. Report submitted to U.S. Army Research Office, Arlington, Va., by Atlantic Research Corporation, Alexandria, Va.


NRC. 1984. Bromotrifluoromethane. Emergency and Continuous Exposure Limits for Selected Airborne Contaminants, Vol. 3. Washington, D.C.: National Academy Press.

NRC. 1984a. Fluorocarbon 11. Pp. 26-33 in Emergency and Continuous Exposure Limits for Selected Airborne Contaminants, Vol. 2. Washington, D.C.: National Academy Press.

NRC. 1984b. Fluorocarbon 21. Pp. 41-45 in Emergency and Continuous Exposure Limits for Selected Airborne Contaminants, Vol. 2. Washington, D.C.: National Academy Press.

NRC. 1984c. Fluorocarbon 12. Pp. 34-40 in Emergency and Continuous Exposure Limits for Selected Airborne Contaminants, Vol. 2. Washington, D.C.: National Academy Press.

NRC. 1984d. Fluorocarbon 113. Pp. 46-50 in Emergency and Continuous Exposure Limits for Selected Airborne Contaminants, Vol. 2. Washington, D.C.: National Academy Press.

NRC. 1984e. Fluorocarbon 114. Pp. 51-57 in Emergency and Continuous Exposure Limits for Selected Airborne Contaminants, Vol. 2. Washington, D.C. : National Academy Press.

NRC. 1992. Guidelines for Developing Spacecraft Maximum Allowable Concentrations for Space Station Contaminants. Washington, D.C.: National Academy Press.

3M. 1993a. Product Toxicity Summary Sheet on PF-5030 3M Brand Performance Fluid. 3M, St. Paul, Minn.

3M. 1993b. Product Toxicity Summary Sheet on PF-5040 3M Brand Performance Fluid. 3M, St. Paul, Minn.

3M. 1995a. Material Safety Data Sheet on PF-5030 3M Performance Fluid. 3M, St. Paul, Minn.

3M. 1995b. Product Toxicity Summary Sheet on PF-5050 3M Brand Performance Fluid. 3M, St. Paul, Minn.

3M. 1995c. Product Toxicity Summary Sheet on PF-5060 3M Brand Performance Fluid. 3M, St. Paul, Minn.

Suggested Citation:"B6 Perfluoropropane and Other Aliphatic Perfluoroalkanes." National Research Council. 2000. Spacecraft Maximum Allowable Concentrations for Selected Airborne Contaminants: Volume 4. Washington, DC: The National Academies Press. doi: 10.17226/9786.
×
Page 137
Suggested Citation:"B6 Perfluoropropane and Other Aliphatic Perfluoroalkanes." National Research Council. 2000. Spacecraft Maximum Allowable Concentrations for Selected Airborne Contaminants: Volume 4. Washington, DC: The National Academies Press. doi: 10.17226/9786.
×
Page 138
Suggested Citation:"B6 Perfluoropropane and Other Aliphatic Perfluoroalkanes." National Research Council. 2000. Spacecraft Maximum Allowable Concentrations for Selected Airborne Contaminants: Volume 4. Washington, DC: The National Academies Press. doi: 10.17226/9786.
×
Page 139
Suggested Citation:"B6 Perfluoropropane and Other Aliphatic Perfluoroalkanes." National Research Council. 2000. Spacecraft Maximum Allowable Concentrations for Selected Airborne Contaminants: Volume 4. Washington, DC: The National Academies Press. doi: 10.17226/9786.
×
Page 140
Suggested Citation:"B6 Perfluoropropane and Other Aliphatic Perfluoroalkanes." National Research Council. 2000. Spacecraft Maximum Allowable Concentrations for Selected Airborne Contaminants: Volume 4. Washington, DC: The National Academies Press. doi: 10.17226/9786.
×
Page 141
Suggested Citation:"B6 Perfluoropropane and Other Aliphatic Perfluoroalkanes." National Research Council. 2000. Spacecraft Maximum Allowable Concentrations for Selected Airborne Contaminants: Volume 4. Washington, DC: The National Academies Press. doi: 10.17226/9786.
×
Page 142
Suggested Citation:"B6 Perfluoropropane and Other Aliphatic Perfluoroalkanes." National Research Council. 2000. Spacecraft Maximum Allowable Concentrations for Selected Airborne Contaminants: Volume 4. Washington, DC: The National Academies Press. doi: 10.17226/9786.
×
Page 143
Suggested Citation:"B6 Perfluoropropane and Other Aliphatic Perfluoroalkanes." National Research Council. 2000. Spacecraft Maximum Allowable Concentrations for Selected Airborne Contaminants: Volume 4. Washington, DC: The National Academies Press. doi: 10.17226/9786.
×
Page 144
Suggested Citation:"B6 Perfluoropropane and Other Aliphatic Perfluoroalkanes." National Research Council. 2000. Spacecraft Maximum Allowable Concentrations for Selected Airborne Contaminants: Volume 4. Washington, DC: The National Academies Press. doi: 10.17226/9786.
×
Page 145
Suggested Citation:"B6 Perfluoropropane and Other Aliphatic Perfluoroalkanes." National Research Council. 2000. Spacecraft Maximum Allowable Concentrations for Selected Airborne Contaminants: Volume 4. Washington, DC: The National Academies Press. doi: 10.17226/9786.
×
Page 146
Suggested Citation:"B6 Perfluoropropane and Other Aliphatic Perfluoroalkanes." National Research Council. 2000. Spacecraft Maximum Allowable Concentrations for Selected Airborne Contaminants: Volume 4. Washington, DC: The National Academies Press. doi: 10.17226/9786.
×
Page 147
Suggested Citation:"B6 Perfluoropropane and Other Aliphatic Perfluoroalkanes." National Research Council. 2000. Spacecraft Maximum Allowable Concentrations for Selected Airborne Contaminants: Volume 4. Washington, DC: The National Academies Press. doi: 10.17226/9786.
×
Page 148
Suggested Citation:"B6 Perfluoropropane and Other Aliphatic Perfluoroalkanes." National Research Council. 2000. Spacecraft Maximum Allowable Concentrations for Selected Airborne Contaminants: Volume 4. Washington, DC: The National Academies Press. doi: 10.17226/9786.
×
Page 149
Suggested Citation:"B6 Perfluoropropane and Other Aliphatic Perfluoroalkanes." National Research Council. 2000. Spacecraft Maximum Allowable Concentrations for Selected Airborne Contaminants: Volume 4. Washington, DC: The National Academies Press. doi: 10.17226/9786.
×
Page 150
Next: B7 Polydimethylcyclosiloxanes »
Spacecraft Maximum Allowable Concentrations for Selected Airborne Contaminants: Volume 4 Get This Book
×
Buy Paperback | $77.00 Buy Ebook | $59.99
MyNAP members save 10% online.
Login or Register to save!
Download Free PDF

The National Aeronautics and Space Administration (NASA) is aware of the potential toxicological hazards to crew members that might be associated with prolonged spacecraft missions. Despite major engineering advances in controlling the atmosphere within spacecraft, some contamination of the air appears inevitable. NASA has measured numerous airborne contaminants during space missions. As the missions increase in duration and complexity, ensuring the health and well-being of astronauts traveling and working in this unique environment becomes increasingly difficult.

As part of its efforts to promote safe conditions aboard spacecraft, NASA requested the National Research Council (NRC) to develop guidelines for establishing spacecraft maximum allowable concentrations (SMACs) for contaminants, and to review SMACs for various spacecraft contaminants to determine whether NASA's recommended exposure limits are consistent with the guidelines recommended by the subcommittee. In response to this request, the NRC first developed criteria and methods for preparing SMACs for spacecraft contaminants, published in its 1992 report Guidelines for Developing Spacecraft Maximum Allowable Concentrations for Space Station Contaminants. Since then, the NRC's Subcommittee on Spacecraft Maximum Allowable Concentrations has been reviewing NASA's documentation of chemical-specific SMACs. This report is the fourth volume in the series Spacecraft Maximum Allowable Concentrations for Space Station Contaminants. The first volume was published in 1994 and the second and third in 1996.

Spacecraft Maximum Allowable Concentrations for Selected Airborne Contaminants: Volume 4 has been reviewed in draft form by individuals chosen for their technical expertise and diverse perspectives in accordance with procedures approved by the NRC's Report Review Committee for reviewing NRC and Institute of Medicine reports. The purpose of that Independent review was to provide candid and critical comments to assist the NRC in making the published report as sound as possible and to ensure that the report meets institutional standards for objectivity, evidence, and responsiveness to the study charge. The review comments and draft manuscript remain confidential to protect the integrity of the deliberative process.

  1. ×

    Welcome to OpenBook!

    You're looking at OpenBook, NAP.edu's online reading room since 1999. Based on feedback from you, our users, we've made some improvements that make it easier than ever to read thousands of publications on our website.

    Do you want to take a quick tour of the OpenBook's features?

    No Thanks Take a Tour »
  2. ×

    Show this book's table of contents, where you can jump to any chapter by name.

    « Back Next »
  3. ×

    ...or use these buttons to go back to the previous chapter or skip to the next one.

    « Back Next »
  4. ×

    Jump up to the previous page or down to the next one. Also, you can type in a page number and press Enter to go directly to that page in the book.

    « Back Next »
  5. ×

    Switch between the Original Pages, where you can read the report as it appeared in print, and Text Pages for the web version, where you can highlight and search the text.

    « Back Next »
  6. ×

    To search the entire text of this book, type in your search term here and press Enter.

    « Back Next »
  7. ×

    Share a link to this book page on your preferred social network or via email.

    « Back Next »
  8. ×

    View our suggested citation for this chapter.

    « Back Next »
  9. ×

    Ready to take your reading offline? Click here to buy this book in print or download it as a free PDF, if available.

    « Back Next »
Stay Connected!