Agrobacterium-transformation methods (Horsch et al. 1985). Since then, other methods for plant transformation, such as electroporation and particle-gun transformation, have been developed (Klein et al. 1987; Finer et al. 1999); these methods allow transformation of plants that are not natural hosts for Agrobacterium.

1.4.2 Development of a Regulatory Framework for Transgenic Plants

Concurrently with developments in the technical aspects of genetically engineering crops by using rDNA methods, regulatory concerns about the release of genetically engineered organisms into the environment emerged. The NIH guidelines in 1978 prohibited the environmental release of genetically engineered organisms unless exempted by the NIH director. In 1982, the RAC reviewed a request to field test “ice-minus” bacteria, strains of Pseudomonas syringae and Erwinia herbicola that had inactivated ice-nucleation genes (Lindow and Panopoulos 1988). NIH approved the request in 1983 (NIH 1983). The approval of the field trial was controversial and sparked several court cases that invoked the National Environmental Policy Act (NEPA) (US Congress 1969). NEPA requires that any agency decision that significantly affects the quality of the environment be accompanied by a detailed statement or an assessment of the environmental impacts of the proposed action and of alternatives to it.

As the field trial was being debated by the courts, a congressional hearing was held at which questions were raised about the ability of federal agencies to address hazards to ecosystems in light of the uncertainties (US Congress 1983). At a second hearing in 1984, the Senate Committee on Environment and Public Works discussed the potential risks with representatives of the Environmental Protection Agency (EPA), NIH, and the US Department of Agriculture (USDA). The government agencies stated that existing statutes were sufficient to address the environmental effects of genetically engineered organisms (US Senate 1984). Also in 1984, a White House committee was formed under the auspices of the Office of Science and Technology Policy (OSTP) to propose a plan for regulating biotechnology.

In 1986, OSTP published the Coordinated Framework for the Regulation of Biotechnology (OSTP 1986), which is still used today. The framework is based on the principle that techniques of biotechnology are not inherently risky and that biotechnology should not be regulated as a process, but rather that the products of biotechnology should be regulated in the same way as products of other technologies. The coordinated framework outlined the roles and policies of the federal agencies and contained the following ideas: existing laws were, for the most part, adequate for oversight of biotechnology products; the products, not the process, would

The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement