A significant indicator of conceptual understanding is being able to represent mathematical situations in different ways and knowing how different representations can be useful for different purposes. To find one’s way around the mathematical terrain, it is important to see how the various representations connect with each other, how they are similar, and how they are different. The degree of students’ conceptual understanding is related to the richness and extent of the connections they have made.

For example, suppose students are adding fractional quantities of different sizes, say They might draw a picture or use concrete materials of various kinds to show the addition. They might also represent the number sentence as a story. They might turn to the number line, representing each fraction by a segment and adding the fractions by joining the segments. By renaming the fractions so that they have the same denominator, the students might arrive at a common measure for the fractions, determine the sum, and see its magnitude on the number line. By operating on these different representations, students are likely to use different solution methods. This variation allows students to discuss the similarities and differences of the representations, the advantages of each, and how they must be connected if they are to yield the same answer.

Connections are most useful when they link related concepts and methods in appropriate ways. Mnemonic techniques learned by rote may provide connections among ideas that make it easier to perform mathematical operations, but they also may not lead to understanding.7 These are not the kinds of connections that best promote the acquisition of mathematical proficiency.

Knowledge that has been learned with understanding provides the basis for generating new knowledge and for solving new and unfamiliar problems.8 When students have acquired conceptual understanding in an area of mathematics, they see the connections among concepts and procedures and can give arguments to explain why some facts are consequences of others. They gain confidence, which then provides a base from which they can move to another level of understanding.

With respect to the learning of number, when students thoroughly understand concepts and procedures such as place value and operations with single-digit numbers, they can extend these concepts and procedures to new areas. For example, students who understand place value and other multidigit number concepts are more likely than students without such understanding to invent their own procedures for multicolumn addition and to adopt correct procedures for multicolumn subtraction that others have presented to them.9



The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement