6
Policy for Astronomy and Astrophysics



The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement



Below are the first 10 and last 10 pages of uncorrected machine-read text (when available) of this chapter, followed by the top 30 algorithmically extracted key phrases from the chapter as a whole.
Intended to provide our own search engines and external engines with highly rich, chapter-representative searchable text on the opening pages of each chapter. Because it is UNCORRECTED material, please consider the following text as a useful but insufficient proxy for the authoritative book pages.

Do not use for reproduction, copying, pasting, or reading; exclusively for search engines.

OCR for page 177
Astronomy and Astrophysics in the New Millennium 6 Policy for Astronomy and Astrophysics

OCR for page 177
Astronomy and Astrophysics in the New Millennium INTRODUCTION For well over 50 years the United States has enjoyed a leading position in astronomy. Remarkable studies of the skies with the Palomar 5-m telescope began in 1948. Rising to the challenge presented by Sputnik in 1957, the federal government put into place highly visible space- and ground-based programs. These marvelous resources for astronomy helped to attract some of the nation’s best young minds to careers in science and engineering. The technological by-products of this effort, particularly in computing, aeronautics and astronautics, telecommunications, numerical simulation, and optics, have helped to give the nation an economic competitive advantage. The field of astronomy continues to attract scientists, and Ph.D. production is up. In 1987, 100 Ph.D.s were awarded, and in 1997 that number increased to 197 (NSF, 1999a). However, a critical time is at hand for astronomy in the United States. Space-based astronomy appears to be thriving, but U.S. leadership in astronomy as a whole is threatened by the decreasing share of federal investment in basic research in astronomy through the National Science Foundation (NSF). The two lead agencies for astronomical research in the United States, NASA and NSF, support space- and ground-based studies, respectively. The Department of Energy (DOE) and the Department of Defense (DOD) also sponsor programs that include astrophysics. In the past decade, NASA and its scientists have been extraordinarily successful in communicating their scientific vision to the public and the Congress. Astronomy carried out in space, free from the interference of Earth’s atmosphere, produces spectacular images of the cosmos at wavelengths ranging from the far- and near-infrared, through the optical and the ultraviolet, to the x-ray. Because “a picture is worth a thousand words,” these beautiful and exotic images elicit a deep and immediate response among scientists and nonscientists alike. Their impact helps explain the public’s enthusiasm for the nation’s space program. The data provided by the suite of NASA missions has revolutionized our understanding of the universe. Opportunities for U.S. astronomy from the ground using large optical and radio telescopes are equally challenging and compelling. For example, the Keck and Gemini telescopes offer high-resolution spectroscopic capabilities that, combined with theoretical analysis and computational modeling, can yield insight into the dynamics, chemical composition, and evolutionary state of the objects imaged from space as well as a wealth of other astronomical phenomena detected from the ground. In addition to very large filled apertures, another advantage that ground-

OCR for page 177
Astronomy and Astrophysics in the New Millennium based facilities have over their space-based counterparts is the short lead time between the latest breakthroughs in the fast-moving electronics and related industries, and the incorporation of such advances in sophisticated instrumentation at the back ends of telescopes. The generally much shorter time scale of ground-based projects also is better suited to the training of students. Ground-based facilities provide the stability of the long baselines required to produce images of faint sources at high angular resolution by interferometric techniques using arrays of telescopes. Large-scale optical, infrared, and radio surveys and synoptic studies, requiring decades of precise measurements on a large number of targets, may also be conducted advantageously from the ground. Adding to the excitement, ground-based astronomy is moving beyond traditional boundaries of optical and radio disciplines into neutrino and gamma-ray astronomy as well. If U.S. astronomy is to remain world-class, improved resources for ground-based efforts must be provided. For ground-based astronomy, the NSF is the main source of federal money. Although the United States has been a world leader in astronomical research during much of the 20th century, other countries have advanced rapidly, so that in some cases their facilities are competitive with—and for some purposes, even superior to—U.S. facilities in optical ground-based astronomy.1 The United States can benefit from international collaboration, but only if it brings world-class capabilities to the collaboration. In this chapter, the committee recommends new policies to keep U.S. astronomy at the scientific frontiers. These recommendations were developed through the extensive efforts of the Panel on Astronomy Education and Policy. The chapter begins with recommendations related to the NSF, NASA, and the DOE, continues with comments on environmental factors affecting observing conditions for astronomy, briefly discusses professional development and the role of professional societies, and concludes with a reply to the questions posed to the committee by the Congress (see the preface). POLICY RECOMMENDATIONS FOR THE NATIONAL SCIENCE FOUNDATION: GROUND-BASED FACILITIES The NSF Division of Astronomical Sciences (AST) provides the National Optical Astronomy Observatories (NOAO), National Radio

OCR for page 177
Astronomy and Astrophysics in the New Millennium Astronomy Observatory (NRAO), National Solar Observatory (NSO), National Astronomy and Ionosphere Center (NAIC), and Gemini Observatory facilities for the use of astronomers from the United States (and elsewhere). The committee commends the NSF for its role in giving U.S. astronomers the support needed to produce this current suite of worldclass facilities, including the Very Large Array (VLA), the Very Long Baseline Array (VLBA), Gemini, and the Global Oscillations Network Group (GONG). In considering how to position the United States so that it can remain among the leaders in ground-based astronomical research in the future, it is helpful to recall recent history. With respect to the funding of observing facilities, ground-based disciplines within astronomy have developed differently over the years. Major radio and solar facilities are now concentrated at national centers, whereas major optical facilities are concentrated at private and state (hereinafter “independent”) observatories, which surpass the national optical facilities in aperture size and total telescope area. The radio community represents 10 percent of active astronomers; the much larger optical and infrared (OIR) ground-based community accounts for 40 percent of active astronomers. Both national and independent radio facilities provide observing time for the community at large. However, for ground-based OIR, about half the community has direct access only to the national facilities because their institutions cannot or do not participate in an independent observatory (NRC, 2000). To use a telescope at an independent observatory, these astronomers must forge a collaboration with someone who has direct access to the telescope. In developing strategies for the new decade, the committee convened an ad hoc cross-panel working group chaired by F. Bash,2 NSF-funded National Observatories, to review the functioning of all NSF-funded observatories and initiate discussion with the relevant panels and with the committee as a whole. Based on input from the Bash working group and on the work of both the education and policy panel and the Panel on Optical and Infrared Astronomy from the Ground, the committee recommends a new paradigm for ground-based astronomy that it believes will lead to the most effective use of ground-based facilities and optimize the science opportunities for the astronomical community. The committee then outlines the roles and responsibilities of the national astronomy organizations and the independent observatories, as well as those of the NSF, in this new paradigm.

OCR for page 177
Astronomy and Astrophysics in the New Millennium RECOMMENDED NEW PARADIGM The United States has a long tradition of independent optical observatories, beginning more than 150 years ago. Construction of the first U.S. observatory, located at Williams College, was completed by 1838; citizens of Boston donated funds to acquire a twin of the world’s largest refractor—a 15-inch telescope—for Harvard College in 1847. Most recently, the Keck Foundation provided the bulk of the funding for two 10-m telescopes for a consortium led by the University of California and Caltech. Currently, the national facilities have 22 percent of the total area of primary mirrors of U.S. optical telescopes, and the independent observatories have the dominant 78 percent (ESO, 1998). The suite of national observatories that serves the U.S. astronomical community—NOAO, NRAO, NAIC, and NSO—was created during the period from 1957 to 1983; Gemini was formed in 1993. Each was created as a result of the arguments put forward by particular scientific communities at different times and in different contexts. Not surprisingly, each has evolved in its own way, and each has enjoyed different successes. As we enter the new millennium, U.S. ground-based astronomy facilities, both independent and national, must evolve in a changing environment. There is growing competition from Europe and Japan, which together have invested in OIR facilities at a level (relative to gross domestic product) greater than 10 times that of the NSF investment over a comparable period,3 and more than 3 times that of the combined federal, state, and private investment. The large investment of state and private funding in major OIR facilities provides the context and opportunity for using federal funds in a highly leveraged way to ensure that the distributed system of U.S. ground-based facilities as a whole has the capabilities to compete successfully for a world leadership position in all of astronomy. Universities, which will produce the next generation of astronomers and instrument builders, as well as other scientists and engineers, must be supported as a key part of the new system. Finally, the public that provides a substantial part of the support for the system must be informed about exciting astronomical discoveries. The committee believes that by working in concert, the independent observatories and the national facilities can ensure that astronomy in the United States will thrive and move forward to capture the scientific opportunities ahead. To help ensure maximum scientific return from federal investments in ground-based astronomy, the committee recommends that all facilities, whether nationally or

OCR for page 177
Astronomy and Astrophysics in the New Millennium independently operated, be viewed as single integrated systems—one for optical and infrared astronomy, one for radio astronomy, and one for solar astronomy. The committee recommends that the NSF Division of Astronomical Sciences implement a plan for ground-based astronomy that reflects an integrated view of independent and national observatories and the funding available from government and private sources. ROLES AND RESPONSIBILITIES OF NATIONAL ASTRONOMY ORGANIZATIONS AND INDEPENDENT OBSERVATORIES To move forward to the next generation of facilities, which are likely to be of a scale that will require a collaborative approach, the committee envisions the following as the responsibilities of the participants: Community participation in major national telescope initiatives must be led by an effective national astronomy organization working in concert with universities and similar institutions. Such an organization should in turn be subject to close community oversight with appropriate advisory bodies. It should: Lead the development of a strategic plan for the evolution of the capabilities of the system by organizing discussions involving the NSF, the independent observatories, the academic community, and industry. Be able to contribute to the scientific leadership and provide the technical expertise (e.g., professional engineering and system management), the administrative skills, and the management experience and infrastructure needed in the building of those facilities that are too large or expensive to fit within the resources of single institutions or small partnerships. Ensure that the United States enters international collaborations with a clear scientific purpose and a well-considered technical and administrative approach, and maintain these or modify them as appropriate for the duration of the project. Coordinate with the community to provide capabilities that support the suite of state-of-the-art large telescopes; such capabilities may include telescopes, instruments, archives, observing modes, and other channels for access to data.

OCR for page 177
Astronomy and Astrophysics in the New Millennium Collaborate with universities to build instruments for national telescopes with agreed-upon and clearly documented technical standards. Establish internships for instrument builders at national observatories in order to foster the training of skilled instrumentalists to benefit both U.S. astronomy and U.S. industry. In the case of the national OIR organization, administer publicly available observing time at federally funded telescopes such as Gemini and, where appropriate, the publicly available time at the independent optical observatories. Recognizing that scientific progress will be strengthened by a cooperative approach on the part of the national and independent facilities, universities/independent observatories should: Develop acceptable mechanisms in concert with the NSF and the relevant national astronomy organization for sharing fractions of their facilities with the larger astronomical community. The Telescope System Instrumentation Program, presented in more detail in Chapter 3 of this report and in Chapter 2 of Astronomy and Astrophysics in the New Millennium: Panel Reports (NRC, 2001), is a prime example of such a mechanism. For the independent observatories, this scheme has the advantage that (a) no one facility will have to provide every capability since diverse facilities will be open to all and (b) their scientific staffs will benefit through increased access to other facilities. Work with the appropriate national astronomy organization to develop a strategic plan for the system as a whole, and implement the parts of the plan that should be carried out at the universities and independent observatories. Work with the national astronomy organization on the development of facilities that are too large or expensive to fit within the resources of single institutions or consortia. Assume the responsibility for purchasing, instrumenting, and operating small telescopes needed for their students and faculty. The committee’s review, reflected in its policy recommendations, led to the following assessment of the current national astronomy organizations: NOAO as currently functioning and overseen is not structured to fulfill the role foreseen for an effective national organization acting on behalf of the ground-based OIR community. The committee believes that NOAO’s goals and operations must be substantially

OCR for page 177
Astronomy and Astrophysics in the New Millennium modified to conform to this paradigm. The NSF, together with NOAO and the Association of Universities for Research in Astronomy (AURA), should establish a common vision of how these new roles can be implemented, and the NSF should set criteria, based on the precepts listed under 1 above, by which NOAO’s success can be evaluated. Using these criteria, the NSF should initiate a high-level external review of NOAO to ensure that changes to achieve these goals can be instituted promptly. Periodic reviews will keep this transition and further evolution on course. Gemini promises to provide the U.S. astronomical community with two telescopes consistent with the highest recommendation of the 1991 survey, The Decade of Discovery in Astronomy and Astrophysics (NRC, 1991). NOAO deserves considerable credit for conceiving and promoting the Gemini project and for supplying much of the technical capability that has made it possible. However, NOAO must continue to exert leadership through the U.S. Gemini Program and, in concert with the U.S. members on the Gemini Board, marshal the expertise to design and build future Gemini instruments that will respond to the science goals of the U.S. community. NRAO has won the respect of the radio community. It should continue to engage the broad university community in developing facilities and instruments, and it should work proactively to ensure that radio astronomy science and instrumentation development are firmly rooted in the universities. NAIC is an example of a university based and operated national observatory that is a uniquely powerful facility. Arecibo serves as an excellent model by inviting the academic community to operate university-built receivers on the telescope. NSO has developed world-leading research capabilities that solidly support both the U.S. and international community of solar astronomers. The committee believes that NSO and NOAO will be well served by NSO’s separation from NOAO in order to accomplish the next solar telescope initiative. The committee is pleased to see that this separation has begun. NEW PROCEDURES AND STRATEGIES If U.S. astronomy is to step up to new challenges, embrace expanding scientific opportunities, including international collaborations, increase

OCR for page 177
Astronomy and Astrophysics in the New Millennium the power of its facilities (with concomitant increases in size and complexity), and exploit the many advances in technology, it is essential to make optimum use of government funding and capitalize on private investment. The committee recommends five strategies for the National Science Foundation. 1. COMPETITIVE REVIEW OF NSF ASTRONOMY FACILITIES AND ORGANIZATIONS The committee recommends that, about every 5 years, the National Science Foundation astronomy facilities be competitively reviewed and prioritized based on past performance and future expectations. A single committee should conduct this review across all subfields of astronomy. New facilities should first be competitively evaluated between 5 and 10 years after they become operational and on the normal cycle thereafter. Ground-based astronomy telescopes generally have useful lifetimes of at least 15 years or more because they can be modified with state-ofthe-art equipment to approach their highest possible levels of performance. Yet, as in all rapidly developing fields, with changing scientific questions and opportunities, some telescopes remain more appropriate than others for addressing new scientific challenges. In evaluating how best to advance, the astronomy and astrophysics community must therefore determine not only which new facilities should be built, but also those that should be modified, privatized, or even shut down. The committee suggests that all NSF astronomy facilities be subjected to a competitive review, with prioritization and privatization or closure as possible options. NASA carries on such a review, called the Senior Review, on a 2-year timetable, which will move to a 3-year cycle in 2003. This review cycle is appropriate to the shorter life of space missions. After the Senior Review, highly ranked missions benefit from increased operations and grants funds; the lowest-ranked missions are frequently ramped down and turned off. Such a procedure is designed to maintain the best science and also to make funds available for new or improved facilities or grants. The committee conducting the competitive review for the NSF may wish to request comparative evaluations of facilities within individual disciplines prior to its deliberations. The competitive reviews

OCR for page 177
Astronomy and Astrophysics in the New Millennium should be timed so as to provide assessments helpful to the NRC’s decadal surveys of astronomy and astrophysics. 2. REGULAR EXPERT ADVICE FOR THE NSF DIVISION OF ASTRONOMICAL SCIENCES The competitive review procedure will offer advice to NSF AST on facilities and programs at 5-year intervals. The NRC’s Committee on Astronomy and Astrophysics provides strategic advice and oversight for the implementation of the decadal survey. NSF AST gathers community input in a variety of formal and informal ways. Beyond these sources of advice, NSF AST has a critical need for regular expert advice on pressing issues that arise, both in the short and long term. The committee strongly encourages NSF AST to find a mechanism to obtain such advice, on a continuing basis, from a small group of experts representative of the community. 3. FUNDING ATTACHED TO NEW FACILITIES The committee recommends that the National Science Foundation budget for any new capital project include funding for operations, new instrumentation development, and research grants associated with the new facility, as well as for construction and the initial complement of instruments. This combined allocation must be regarded as the cost of the new facility. The committee emphasizes that the inclusion of grant money specific to each new facility should not displace the existing NSF Division of Astronomical Sciences unrestricted grants program. Compelling scientific challenges drive the construction of new facilities for ground-based astronomy. Hardware alone does not ensure a successful facility; reaping the scientific benefits a facility can provide requires substantial complementary activities. These efforts include broadly based observing programs, frequently at different wavelength bands, challenging theoretical research, and ongoing development of instrumentation to benefit from advances in new technologies, instrument design, and computational power. Starting construction without an overall budget in hand for a complete program can spell lost opportuni-

OCR for page 177
Astronomy and Astrophysics in the New Millennium ties for researchers who could capitalize on the powerful new capabilities; bare-bones instrumentation efforts unable to move forward with technology developments; and operations funds inadequate to realize the scientific potential of the facility. The committee strongly recommends that a different mode of budgeting be instituted. The community and the NSF must commit at the beginning of a project to estimate adequately and acquire the funds required to properly utilize the facility for the research of which it is capable. Without clear identification of these monies, new construction should not begin. This committee rates the importance of the unrestricted grants program so highly that it emphasizes that new initiatives should not be undertaken at the expense of the unrestricted grants program. Based on the Panel on Astronomy Education and Policy’s examination of the costs of existing radio and optical facilities, the committee estimates that each year about 5 to 10 percent of the total cost of capital construction—materials and labor—is required to support reliable operation for a full range of observing modes. About 3 percent per year will be needed for the first 5 years of operation to upgrade the initial instrumentation and to provide a suite of new instruments that fully exploit the capabilities of the new facility. These estimates are necessarily approximate because different facilities count faculty and staff positions in different ways, and the cost of a facility may or may not include the cost of site development or base camps. The 3 percent figure for instrumentation is somewhat higher than the average for existing facilities because instrumentation is generally underfunded. For example, had this recommendation been in place for the past decade, the scientific capability of the VLA would not be compromised by the use of technology left over from the 1970s. To fully exploit new facilities, researchers should be able to carry out ambitious, creative programs that develop the facilities’ full capabilities. The committee therefore recommends that an additional 3 percent of the capital cost be budgeted for each of the first 5 years for facility grants for major ground-based facilities. For moderate ground-based facilities, a cost-effective and competitive grants program requires a somewhat higher percentage, and the committee recommends 5 percent per year for such facilities. The funding for small ground-based facilities is inadequate to justify facility grants programs. Facility grants for the major and moderate facilities would support the costs of the users of the facility, research grants related to the use of the facility, including multiwave-

OCR for page 177
Astronomy and Astrophysics in the New Millennium committee received many helpful communications from the community. Praise was high for the NASA/STScI Hubble Fellowship program and the more recent, highly selective fellowships associated with the large NASA missions CGRO and Chandra. The recently instituted NSF CAREER program for young faculty appears to attract strong candidates who wish to integrate educational activities with their research and other professional responsibilities. Several issues in professional training and development are worthy of comment: postdoctoral training, NASA’s Long-Term Space Astrophysics program, and the participation of women and minorities. POSTDOCTORAL TRAINING Postdoctoral fellowships play a critical role in the career path of most researchers in astronomy and astrophysics. Despite the great success and high visibility of the Hubble Fellowship program over the past decade, enhanced support of postdoctoral associates—both grant-funded and portable—is needed in many areas of astronomy and astrophysics, including ground-based astronomy, instrumentation, and theory. Given the investment in new facilities, it is vital to encourage talented young people to become involved in instrumentation. Since substantial resources are needed to build new instruments, the committee recommends that postdoctoral positions for instrumentation be associated with particular projects or facilities to ensure that the needed resources will be available. The committee recommends a targeted program of portable postdoctoral fellowships in theoretical astrophysics, jointly supported by NASA and the NSF, as a high-leverage small initiative. The focus on theory reflects the committee’s strong belief that its ambitious recommended program of new facilities will be most effective if a small fraction of the investment is used to support talented young researchers who will expand—or perhaps tear down—the theoretical framework on which the design of these missions is predicated. NASA’S LONG-TERM SPACE ASTROPHYSICS PROGRAM One opportunity exists at NASA to receive research support over a 5-year period: the Long-Term Space Astrophysics (LTSA) program. Continuity of support for this period is highly regarded by the science

OCR for page 177
Astronomy and Astrophysics in the New Millennium community because it enables research of adequate depth on a substantive issue in astronomy and astrophysics. A certain fraction of the grants has traditionally been set aside for scientists in the first stages of their careers so that they might establish a record of independent research in preparation for permanent or tenure-track positions. One study of the progress of junior LTSA scientists, however, indicated that this goal has not, in fact, been achieved:5 Junior LTSA scientists have been substantially less successful in obtaining tenure-track faculty positions than their peers with named fellowships, such as the Hubble fellowships. The committee therefore recommends that in the LTSA program the separation between senior and junior scientists be eliminated, and that the selection of grants be based solely on scientific merit. WOMEN IN ASTRONOMY In 1999 women constituted 21 percent of the active membership of the American Astronomical Society (AAS). Each year between 1920 and 1995, women who earned Ph.D. degrees in astronomy represented 8 to 20 percent of the total astronomy Ph.D.s awarded (AAS CSWA, 1996; AAS, 1997). In the competition for NSF grants in astronomy over the decade from 1988 to 1997, the success rate of women exceeded that of men for 8 of the years. Assessment of the representation of women at various professional levels is based on the assumption that the pool of women astronomers corresponds to the percentages documented over the years for astronomy Ph.D. production. The 1999 STScI survey suggests that in 1999 a lower percentage of women (41 percent) than men (58 percent) advanced from graduate school to a postdoctoral position. Comparison by gender of those holding postdoctoral appointments in 1992 with those holding junior faculty appointments in 1999 suggests that men and women were selected at similar rates for entrylevel faculty positions. But women’s advancement to higher positions is no faster and apparently slower than men’s. Both the 1999 STScI survey and a 1999 AAS demographic survey (discussed in AAS CSWA, 2000) show that for astronomy faculty in U.S. institutions, women constitute 18 percent of the assistant professors, 13 percent of the associate professors, and only 6 percent of the full professors. While the fraction of women at the assistant and associate professor level reflects the Ph.D. production rate, that at the full professor level does not. Astronomy is a relatively small discipline, making statistical study of the field’s demographics difficult. There are only 30 women astronomy

OCR for page 177
Astronomy and Astrophysics in the New Millennium professors at 34 universities. However, studies across the physical sciences that include astronomy consistently show that men advance to senior positions more rapidly than women, even when starting from the same point, such as a prestigious NSF or NRC postdoctoral fellowship. This disparity does not appear to stem from any of the sociological factors that might distinguish women from men in current society; rather, the prevailing model is that women suffer from an accumulation of smaller disadvantages, which together result in longer time to tenure or to promotion to a full professorship, less pay compared with that for men who have similar credentials, and diminished representation at the top echelons of scientific society (Sonnert and Holton, 1996; Valian, 1998). A report on senior women on the Massachusetts Institute of Technology (MIT) science faculty concluded that gender bias prevailed on that campus. The dean of science at MIT acknowledged that gender discrimination against senior women science faculty marginalized the women, undervalued their achievements, and excluded them from positions of power (MIT, 1999). The astronomy community needs to understand why women are underrepresented in certain areas, and thorough studies of career patterns should be continued. The committee calls on the community, particularly those in leadership positions, to ensure equitable treatment of women in astronomy. MINORITY SCIENTISTS IN ASTRONOMY Blacks, Hispanics, and Native Americans are underrepresented in the total U.S. science and engineering labor force. Blacks and Hispanics constitute 19 percent of the population and the total labor force, but only 8 percent of the science and engineering labor force (NSF, 1994).6 Furthermore, these groups constitute only 6 percent of science and engineering Ph.D. recipients in the United States, and less than 5 percent of those employed in academia (NSB, 1996; NSF, 1996, Table 3). Although the participation of Blacks, Hispanics, and Native Americans in advanced high school mathematics classes increased between 1982 and 1994, their scores in standardized mathematics tests were still lower than those of other students, and the discrepancy did not diminish between 1990 and 1996 (NCES, 1996). Mathematics and science achievement at the K-12 level is critically important as a basis for further science and engineering study. Currently, these minorities account for 4 percent of the AAS mem-

OCR for page 177
Astronomy and Astrophysics in the New Millennium bership.7 Between 1986 and 1995, the fraction of astronomy Ph.D.s awarded to minority scientists ranged between 1 and 4 percent; over a 22-year period the average was 2 percent.8 The success rate of minority principal investigators in winning NSF AST grants is comparable to the rates for all women and men over the past 10-year period—minority scientists appear fully competitive in winning NSF grants. To identify areas of concern and to foster mentoring and other opportunities for underrepresented minorities at all levels of experience, the AAS has established the Committee on the Status of Minorities. The importance of a strong K-12 mathematics and science education in fostering scientific and technical careers represents an opportunity for well-designed programs in astronomy to have a positive impact in attracting minorities to science. Astronomers could be significant role models and mentors for young minority scientists and students. The committee believes that providing all members of the community equal access to professional opportunities will yield the strongest science. Achieving this goal will require the efforts and the support of all members of the astronomical community. ROLE OF PROFESSIONAL SOCIETIES The major astronomical societies active in the United States are the American Astronomical Society, the Astronomical Society of the Pacific, and the Division of Astrophysics of the American Physical Society. They differ in their membership, activities, and goals, but each offers a valued resource to the astronomical community. The American Astronomical Society, the society for professional astronomers in North America, contributes substantially to the progress of astronomy by publishing scholarly journals, organizing scientific meetings, and, more recently, expanding its focus on astronomers’ education and employment needs. Among all the scientific societies, the AAS has clearly taken the lead in communicating the results of its meetings to the public at large and has paved the way for the specialized divisions to follow suit. Responsive to the needs of the community, the AAS reviews and issues small research and travel grants (sponsored by the AAS, NASA, and the NSF), holds town meetings with agency representatives, and has recently demonstrated its leadership in preparing The American Astronomical Society’s Examination of Graduate Education in Astronomy (funded by the NSF; AAS, 1997). Activities at AAS meetings

OCR for page 177
Astronomy and Astrophysics in the New Millennium concerning employment, classroom education, and public policy serve to inform astronomers and help them in meeting their professional responsibilities. The AAS has encouraged and participated in the broad community discussion that produced this decadal consensus on the future of astronomy. Public forums at the AAS scientific meetings were invaluable in communicating with a broad range of astronomers; the Web site supported by the AAS produced discussion and a variety of ideas. In addition, membership information from the AAS data collection system complemented other data used in this report. The Astronomical Society of the Pacific (ASP) is an organization of both professional and amateur astronomers that has developed a strong outreach and education program for amateur astronomers and the public. It is the largest general astronomy society in the world, with members from more than 70 nations. The ASP’s professional publications, a journal and a series of conference proceedings, are valuable resources for the astronomical community. Recently the ASP has focused on helping elementary school teachers use astronomy to excite children about careers in science, engineering, technology, and mathematics (see Chapter 5). The ASP’s catalog (online at <www.aspsky.org/catalog.html>) is designed as an accessible resource to help teachers acquire lesson plans and demonstration materials for use in the classroom. The ASP also seeks to represent the astronomy instructors in 2-year colleges and junior colleges. The American Physical Society’s (APS’s) Division of Astrophysics is dedicated to advancing and communicating knowledge of astrophysics and its relationship to the understanding of fundamental physical processes. It pays particular attention to linking astrophysics to nuclear and particle physics. The division convenes symposia in connection with APS meetings—for example, a symposium celebrating 100 years of astrophysics was held at the APS centennial meeting in 1999. These professional societies also assist in identifying capable and visionary astronomers to meet the important challenges of working in short- and long-term positions at the federal agencies, particularly the NSF and NASA, where dedicated staff can have a significant effect on the progress of astronomy. Action on several of the committee’s recommendations depends on the future participation and leadership of the AAS, ASP, and APS. The committee urges that the funding agencies recognize and support

OCR for page 177
Astronomy and Astrophysics in the New Millennium specific activities of these broadly based professional organizations of astronomers. CONGRESSIONAL QUESTIONS The House of Representatives Committee on Science staff, citing 1997 authorization language for NSF, asked the NRC to respond to several questions, which were then divided between the Committee on Astronomy and Astrophysics (CAA) and the Astronomy and Astrophysics Survey Committee (AASC). The questions for which the CAA was responsible are addressed in the NRC report Federal Funding of Astronomical Research (NRC, 2000). The AASC’s answers to its questions are implicit in the preceding discussions and recommendations and are presented explicitly here. Have NASA and NSF mission objectives resulted in a balanced, broadbased, robust science program for astronomy? Have these overall missions been adequately coordinated and has this resulted in an optimum science program from a productivity standpoint? Astronomy in the United States benefits from a vigorous program in space, coordinated by NASA, and a program of basic research and ground-based astronomy, led by the NSF. The DOE and other agencies contribute as well. The committee is generally pleased with the current and proposed ground- and space-based initiatives, which demonstrate that a robust and broadly based program is in place. Balance among various components of the program, however, remains a concern of the astronomical community. A large portion of the total support for astronomy is now tied to a few flagship missions of NASA. The committee shares the concern, expressed in the report Federal Funding of Astronomical Research (NRC, 2000), that this arrangement leaves the program susceptible to a catastrophic mission failure. The committee’s recommendation for a diverse range of missions addresses this issue to some extent. To create a better balance between NASA and the NSF, the committee has made several recommendations to strengthen the ground-based program:

OCR for page 177
Astronomy and Astrophysics in the New Millennium National and independent observatories should be viewed as integrated systems—one for ground-based OIR astronomy, one for ground-based solar astronomy, and one for radio astronomy—of capabilities and resources for the United States as a whole. This approach leverages the private contributions to astronomy and positions the nation well for science opportunities in the international arena. Funds for grants should be included in the budgets of new ground-based facilities for their first 5 years of operation. The NSF should take more initiative in sharing the achievements of its scientists with the public, just as NASA does. The NSF should work with other agencies and with the astronomical community to build interagency programs that will aggressively pursue astronomical problems of broad national interest. What special strategies are needed for strategic cooperation between NASA and NSF? Should these be included in agency strategic plans? Coordination between NASA and the NSF can be advantageous because (1) the sheer scale of many modern astronomical investigations requires a coordinated national, if not international, effort; (2) the enormous increase in technical, computer, and Web-based capability reduces the barriers to cooperation; and (3) the growing sophistication of researchers’ investigations implies that coordination across wavelength bands and across disciplines is required to produce a deeper and more fundamental understanding of the objects and processes under study. Interagency cooperation and joint projects between NASA and different divisions of NSF can initiate new scientific opportunities (e.g., GONG and SOHO-MDI in helioseismology) and capitalize on the NSF’s many resources in research, engineering, and education. Successful collaborations between NASA and the NSF have focused on specific science issues in activities such as the Shoemaker-Levy Jupiter Collision and Life in Extreme Environments programs. All the scientific themes identified by the committee as being ripe for progress in this decade can be addressed by both ground- and space-based facilities, opening the way for additional NSF and NASA cooperation. Furthermore, the committee has recommended that the National Virtual Observatory and the National Astrophysical Theory Postdoctoral Program be jointly funded by NASA and the NSF. In addition to NASA and the NSF, DOE sponsors research in astrophysics to address fundamental problems linked especially to particle

OCR for page 177
Astronomy and Astrophysics in the New Millennium physics, nuclear physics, and cosmology. Collaborations among these agencies are most effective when they are driven by specific scientific programs and when each agency contributes the special expertise of its area. Each agency can recognize its own unique capabilities and those of related agencies, and each should initiate the steps toward collaborations that it believes will be fruitful. Each agency should have a strategic plan for astronomy and astrophysics in place and should also have cross-disciplinary committees (such as DOE and NSF’s Scientific Assessment Group for Experiments in Non-Accelerator Physics [SAGENAP] and NASA’s Space Science Advisory Committee [SSAC]) available to evaluate major collaborative activities in astrophysics. The CAA should provide oversight from the NRC. The committee has recommended that these agencies should work together and with the astronomical community to build new interagency programs that will address astronomical problems of broad national interest. The traditional broker for interagency cooperation, the Office of Science and Technology Policy, could play a constructive role in facilitating the necessary coordination. How do NASA and NSF determine the relative priority of new technological opportunities (including new facilities) compared to providing long-term support for associated research grants and facility operations? At present NASA and the NSF differ in their approach to supporting new facilities, research grants, and facility operations. NASA is charged with developing scientific opportunities in space, and providing frequent access to space remains a paramount goal. With that framework, and with the aid of the scientific community, NASA has developed four scientific themes. Missions to develop these themes are budgeted with a total cost that includes construction, mission operations, and data analysis as one package in the mission’s prime phase; the funding level for operations and data analysis during the mission’s subsequent extended phase is determined by competitive review among all operating missions (NASA’s Senior Review process). NSF AST supports facilities with the major share of its budget, and only recently has it developed a strategic plan. The University Grants program of the NSF supports investigator-initiated basic research that covers all of astronomy and astrophysics. When scientific opportunities are compelling, new facilities may be developed in ground-based astronomy. The NSF allots its construction monies through a major research equipment account line, distinct from the grants and operations accounts. Frequently, provision of funds to

OCR for page 177
Astronomy and Astrophysics in the New Millennium capitalize on the astronomy made possible by new facilities is neglected, preventing the new facilities from reaching their full potential and squeezing the NSF AST grants program. In both cases basic research suffers. The committee believes that the NSF astronomy program would be strengthened if the budgeting and operations procedure were changed to include adequate funds for operations, instrumentation, and grants associated with each new facility. In addition the committee proposes cross-disciplinary competitive reviews of major ground-based facilities to evaluate the allocation of resources, with the aim of optimizing the scientific return on the nation’s investment in astronomy and astrophysics. NOTES 1.   The 8-m-class Japanese telescope, Subaru, has just been completed on Mauna Kea. The European Southern Observatory’s Very Large Telescope—a grouping of four 8-m-class telescopes in Chile that can be used individually or linked together—is now under construction, with two of the four now in operation. Also entering construction is the Gran Telescopio Canarias (10 m+) of the Institute for Astrophysics in the Canary Islands. 2.   Members of the group included Frank Bash, chair, Don Campbell, Bruce Carney, Richard Elston, Phil Goode, Ken Kellermann, David Morrison, Thomas Rimmele, Blair Savage, and Stephen Strom. 3.   Evaluating the percentage of a country’s gross domestic product (GDP) per citizen that is invested in 8-m-class telescopes, L. Ramsey (personal communication, 1999) found that this number amounted to 0.0157 percent for European Southern Observatory-member countries and 0.0125 percent for Japan, but only 0.0011 percent for the United States—a factor of 10 lower for the United States. Indeed, compared with the contributions of all the member countries participating in the U.S. national telescope, Gemini, the U.S. contribution ranked next to last in percentage of GDP invested per citizen; only Brazil ranked lower. 4.   The Owens Valley Radio Observatory and the Caltech Submillimeter Observatory give 50 percent of their time to outside observers; the Berkeley-Illinois-Maryland Association allocates 30 percent of observing time to outside astronomers; the Five College Radio Astronomy Observa-

OCR for page 177
Astronomy and Astrophysics in the New Millennium     tory awards 50 percent of time on the 14-m millimeter-wave telescope to external users (observatory directors, personal communications, 2000). 5.   “A Longitudinal Study of Selected Astronomers Based on Early Sources of Support,” provided by D. Helfand, Columbia University, to the Panel on Astronomy Education and Policy. 6.   By contrast, Asians represented 3 percent of the U.S. population but constituted 10 percent of the scientists and engineers in the United States in 1995 (NSB, 1996). 7.   Data in a personal communication from K. Marvel, AAS, 1999. 8.   NSF tabulation. Statistics on minorities in astronomy faculty positions are not currently available. Data from an AAS-initiated sequence of frequently conducted member surveys should become available in the future.

OCR for page 177
Astronomy and Astrophysics in the New Millennium This page intentionally left blank.