List of Findings and Recommendations

A complete list of the committee’s findings and recommendations appears below in the order they appear in the body of the report

CHAPTER 2 The Uninhabited Air Vehicle as a System

Recommendation. The U.S. Air Force should establish a research and development program to develop fundamental technologies that will advance the use of UAVs by enabling them to carry out unique missions or by providing significant cost savings.

Finding. The USAF Scientific Advisory Board has provided a comprehensive analysis of the USAF’s needs and potential missions for UAVs. This analysis of short-term and midterm needs was the basis for the committee’s assessment of long-term technical and operational requirements.

Finding. Communications and data processing are not limiting technologies for the development and operation of military UAVs. Available technologies can accommodate the needs of currently conceived missions, and developments under way in the telecommunications community will be able to satisfy the needs of expanded military missions for UAVs.

Finding. The design decision that has the most profound effect on the human-machine sciences is degree of autonomy.



The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement



Below are the first 10 and last 10 pages of uncorrected machine-read text (when available) of this chapter, followed by the top 30 algorithmically extracted key phrases from the chapter as a whole.
Intended to provide our own search engines and external engines with highly rich, chapter-representative searchable text on the opening pages of each chapter. Because it is UNCORRECTED material, please consider the following text as a useful but insufficient proxy for the authoritative book pages.

Do not use for reproduction, copying, pasting, or reading; exclusively for search engines.

OCR for page 101
Uninhabited Air Vehicles: Enabling Science for Military Systems List of Findings and Recommendations A complete list of the committee’s findings and recommendations appears below in the order they appear in the body of the report CHAPTER 2 The Uninhabited Air Vehicle as a System Recommendation. The U.S. Air Force should establish a research and development program to develop fundamental technologies that will advance the use of UAVs by enabling them to carry out unique missions or by providing significant cost savings. Finding. The USAF Scientific Advisory Board has provided a comprehensive analysis of the USAF’s needs and potential missions for UAVs. This analysis of short-term and midterm needs was the basis for the committee’s assessment of long-term technical and operational requirements. Finding. Communications and data processing are not limiting technologies for the development and operation of military UAVs. Available technologies can accommodate the needs of currently conceived missions, and developments under way in the telecommunications community will be able to satisfy the needs of expanded military missions for UAVs. Finding. The design decision that has the most profound effect on the human-machine sciences is degree of autonomy.

OCR for page 101
Uninhabited Air Vehicles: Enabling Science for Military Systems Recommendation. The U.S. Air Force should continue to strengthen its activities on human-machine science related to the design and development of UAVs. Research should be pursued in the following key areas: integration of human-machine systems into the design process, including (1) the optimal and dynamic allocation of functions and tasks and (2) determination of the effects of various levels of automation on situational awareness human performance, including (1) the investigation of human decision-making processes, (2) the development of methods to define and apply human-performance measures in system design, and (3) the enhancement of force structure through improved methods of team interaction and training information technologies, including (1) the determination of the effects of human factors on information requirements and presentation and (2) the development of enhanced display technologies to improve the human operator’s ability to make effective decisions CHAPTER 3 Aerodynamics Recommendation. The U.S. Air Force should focus aerodynamic research on the following areas to maximize the benefit to future UAVs: boundary-layer research focused on issues important to UAVs, including (1) transition prediction with (three-dimensional) pressure gradients, Reynolds numbers, and Mach numbers typical of UAV flight conditions and (2) improved flow modeling with part-chord natural laminar flow techniques for real-time flow sensing and actuation design architectures for complex multidisciplinary problems, including highly integrated systems aeroelastic analysis and design approaches, especially for very flexible, unrestrained, actively-controlled aircraft novel vehicle control concepts, including flow control exploitation and modeling of unsteady, nonlinear, three-dimensional aerodynamics design concepts for very low Reynolds numbers, including steady and unsteady systems aerodynamic modeling concepts for designing vehicle control systems CHAPTER 4 Airframe Materials and Structures Recommendation. To support the development and introduction of probabilistic methods for UAVs, the U.S. Air Force should sponsor research on (1) analytical

OCR for page 101
Uninhabited Air Vehicles: Enabling Science for Military Systems tools, (2) characterization and testing, (3) simulation methods, and (4) design criteria. Recommendation. As part of an integrated approach to vehicle configuration and structural design, the U.S. Air Force should conduct research to develop a fundamental understanding of design and analysis methods for aeroelastic tailoring of composite structures. This capability will be especially important for high-altitude, long-endurance configurations. Recommendation. The U.S. Air Force should monitor the progress of the Composites Affordability Initiative and conduct research to develop a fundamental understanding of processes with promise for UAV structures. Recommendation. The U.S. Air Force should conduct research to develop a fundamental understanding of metals processes applicable to UAV structures, such as research on low-cost processing of UAV airframe components. Recommendation. The U.S. Air Force should expand the suite of materials and processes for use in small, low-cost vehicles to include very low-cost, commodity-grade materials that are not used in conventional aircraft constructions. Recommendation. The U.S. Air Force should develop computational models for new materials and processes and apply them to UAVs. Recommendation. The U.S. Air Force should develop improved health monitoring technologies that take advantage of recent advances in sensors, controls, and computational capabilities. Specific opportunities include the following: microelectrical mechanical systems (MEMS) and mesoscale technologies for integrated sensor-actuation-control devices improved load and condition-monitoring capabilities that use piezoelectric sensors and neural networks for data analysis active flutter suppression and buffet load suppression systems that link condition-monitoring capabilities with piezoelectric transducers/actuators and intelligent controls CHAPTER 5 Propulsion Technologies Recommendation. The U.S. Air Force should include research on propulsion systems for UAV applications in its long-term research program. The following general research topics should be included:

OCR for page 101
Uninhabited Air Vehicles: Enabling Science for Military Systems high-altitude propulsion technologies, which may include gas turbines, internal combustion engines, solar-powered motors, or fuel cells propulsion systems for small, highly maneuverable vehicles, including vertical takeoff and landing (VTOL) capabilities computational modeling capability to reduce the need for engine testing during development cost-reducing technologies that, for example, reduce parts count and complexity The following specific research topics should be considered: low Reynolds number turbomachinery, which is very important for both high-altitude operation and very small vehicles low Reynolds number heat rejection for high-altitude coolers and for cooling very small propulsion systems at lower altitudes turbomachinery tip clearance desensitization (for highly loaded engines, high-altitude operation, and very small systems) desensitization to leakage and better, cheaper seals to reduce cost and enhance performance for highly maneuverable and very small vehicles thrust vectoring for highly maneuverable vehicles magnetic, air, and solid lubricated bearings to improve long-term storage, enhance high-altitude operation, and reduce complexity and cost technologies for low-cost accessories, which tend to dominate the cost of smaller engines low-cost vapor and liquid cooling schemes and affordable high-temperature materials (e.g., structural, magnetic, and electronic materials) more effective cooling technologies for small engines CHAPTER 6 Power and Related Technologies Finding. No fundamental research issues related to the generation of power aboard UAVs must be resolved to enable generation-after-next vehicles. CHAPTER 7 Control Technologies Recommendation. In light of the special factors driving the design of UAVs, the U.S. Air Force should strengthen its support for basic research programs addressing the rapid (automated) design and implementation of high-performance control laws. Areas of interest include basic theory for nonlinear and adaptive control, reusable control law structures and processes capable of full-envelope design, software tools for automated control design and analysis, automated code

OCR for page 101
Uninhabited Air Vehicles: Enabling Science for Military Systems generation from high-level design tools, and simulation models with sufficient fidelity for affordable tests and verifications. Recommendation. The U.S. Air Force should pursue basic research to provide scientific support for robust vehicle-management functionality. Recommendation. The U.S. Air Force should enhance the capabilities of available design tools and planning aids by supporting ongoing efforts related to realtime path planning and optimization algorithms, and by embarking on a program of basic research in control of dynamic networks. Recommendation. Motivated by the urgent need for a better understanding of the role of uncertainty in virtual engineering, the U.S. Air Force should establish a basic research program in uncertainty management. Recommendation. The U.S. Air Force should monitor developments in microelectromechanical systems (MEMS) and undertake research to develop and apply a new generation of MEMS sensors and actuators. CHAPTER 8 Research on Vehicle Subsystems Recommendation. The U.S. Air Force long-term UAV research program should focus on crosscutting subsystem technologies. Recommendation. As the long-range plans and priorities for UAVs emerge, the U.S. Air Force should include the applicable research opportunities in the long-range research program.

OCR for page 101
Uninhabited Air Vehicles: Enabling Science for Military Systems This page intentionally left blank.