FIGURE 3.1 Equipment used in the treatment of EBR-II spent nuclear fuel.

SOURCE: Argonne National Laboratory.

provide a thermal bond; sufficient sodium-metal is also added to cover the top of the fuel. An argon-gas-filled expansion region extends from the top of the fuel/sodium to the top of each fuel element. An EBR-II driver assembly typically contains 4.5 kg of uranium.

The EBR-II blanket fuel is depleted uranium in a stainless-steel cladding (Figure 3.3). Each assembly contains 19 fuel elements; each element contains 5 slugs of uranium, each weighing 0.50 kg, for a total of 2.5 kg of uranium per element.2 The total weight of uranium in a blanket assembly is normally 47.5 kg.3 As is the case for the driver fuel, the gap between the fuel and the cladding is filled with sodium. The average discharge burnup for this fuel was approximately 1.2 wt %.


K.M. Goff, L.L. Briggs, R.W. Benedict, J.R. Liaw, M.F. Simpson, E.E. Feldman, R.A. Uras, H.E. Bliss, A.M. Yacout, D.D. Keiser, K.C. Marsden, and C.W. Nielsen, Production Operations for the Electrometallurgical Treatment of Sodium-Bonded Spent Nuclear Fuel, NT Technical Memorandum No. 107, Argonne National Laboratory, Argonne, IL, 1999, p. 13.


S.R. Sherman, D. Vaden, R.D. Mariani, B.R. Westphal, T.S. Bakes, S.S. Cunningham, B.A. Johnson, D.V. Laug, and J.R. Krsul, Process Description for Blanket Fuel Treatment Operations, NT Technical Memorandum No. 113, Argonne National Laboratory, Argonne, IL, 1999, p. 36.

The National Academies of Sciences, Engineering, and Medicine
500 Fifth St. N.W. | Washington, D.C. 20001

Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement