National Academies Press: OpenBook

Review of ONR's Uninhabited Combat Air Vehicles Program (2000)

Chapter: A Committee Biographies

« Previous: Appendixes
Suggested Citation:"A Committee Biographies." National Research Council. 2000. Review of ONR's Uninhabited Combat Air Vehicles Program. Washington, DC: The National Academies Press. doi: 10.17226/9885.
×

A

Committee Biographies

Frank A. Horrigan (Chair) retired in September 1999 from the Technical Development Staff for Sensors and Electronic Systems at Raytheon Systems Company. He has broad general knowledge of all technologies relevant to military systems. Dr. Horrigan, a theoretical physicist, has more than 35 years' experience in advanced electronics, electro-optics, radar and sensor technologies, and advanced information systems. In addition, he has extensive experience in planning and managing IR&D investments and in projecting future technology growth directions. Dr. Horrigan once served as a NATO fellow at the Saclay Nuclear Research Center in France. Today he serves on numerous scientific boards and advisory committees, including the NRC's Army Research Laboratory Technical Assessment Board and its Naval Studies Board.

Philip S. Anselmo is currently an executive with the Electric Sensors and Systems Sector of Northrop Grumman Corporation in Baltimore, Maryland, following a career with the U.S. Navy during which he achieved the rank of Rear Admiral. His present activities include development of intelligence, surveillance, and reconnaissance (ISR) programs for all the Services, and he works closely with the National community to extend its robust capability to real-time targeting problems. Admiral Anselmo, who is a naval aviator, possesses a diverse naval operational background, particularly in aviation and air warfare. His career includes commanding the USS Kansas City and USS Constellation. (Most of his early operational duties, however, included tours in fighter squadrons and carrier air wing groups.) Admiral Anselmo retired in 1995 as the Chief of Naval Operations' Deputy Director for Space and Electronic Warfare.

Willard R. Bolton is deputy technical director for the Atmospheric Radiation Measurement-Unmanned Aerospace Vehicles (ARM-UAV) program, a DOE collaboration involving industrial, academic, and national laboratory participation, and manager of the Exploratory Systems Technology Department at Sandia National Laboratories, Livermore, California. The ARM-UAV program was established to investigate the interaction of clouds and solar energy in the atmosphere and to demonstrate the utility of UAVs for atmospheric research by, for example, making radiative flux measurements over cirrus clouds and by providing data for comparison with satellite-derived radiative fluxes. He has an extensive background in aerodynamics, particularly in regard to UAV stability and control. Prior to joining Sandia, he was an engineer at the Boeing Military Airplane Division. His professional experience, which is in both technical management and program management, has included responsibility

Suggested Citation:"A Committee Biographies." National Research Council. 2000. Review of ONR's Uninhabited Combat Air Vehicles Program. Washington, DC: The National Academies Press. doi: 10.17226/9885.
×

for a number of advanced development and exploratory projects in areas ranging from parachute aerodynamics to high-speed water, ice, and earth penetration to suborbital missile payloads.

Thomas J. Cassidy, Jr., a retired Rear Admiral, U.S. Navy, is president and CEO of General Atomics Aeronautical Systems, a company that manufactures and supports UAV systems. Admiral Cassidy has a strong background in UAVs, particularly in regard to their S&T demands and operational needs. Prior to joining General Atomics in 1987, Admiral Cassidy served as a naval aviator for 34 years; his command duties included the Naval Air Station at Miramar, California, and the Pacific Fleet Fighter and Airborne Early Warning Wing. Admiral Cassidy also served on the Joint Chiefs of Staff and as director of Tactical Readiness for the Chief of Naval Operations. He is an associate fellow of the Society of Experimental Test Pilots. He also serves on the board of directors of the San Diego Aerospace Museum.

Robert W. Day is director of Programs and Analysis for the Raytheon Systems Company. His background is in combat C4I systems. Mr. Day joined the Raytheon Company when it merged with the Hughes Aircraft Company, where he was deputy manager of Defense Systems. (The principal product lines of Defense Systems were medium-range surface-to-air missile systems, theater missile defense systems, and battlefield systems.) Mr. Day served in the U.S. Navy for 26 years, during which time he flew A-6 aircraft combat missions in both Vietnam and Libya. Ashore, Mr. Day served at the Space and Naval Warfare Command, where he coordinated multiple program efforts in C4I with the Office of Naval Research. His last Navy assignment was as director of Stealth and Counter-Stealth Technology, where he was responsible for all technology developments, testing, technology transfer, security, export policy, and inter-Service contacts in the area of stealth and counterstealth.

Alan H. Epstein is R.C. Maclaurin Professor of Aeronautics and Astronautics, head of the Division of Propulsion and Energy Conversion, and director of the Massachusetts Institute of Technology Gas Turbine Laboratory. He received his degrees in aeronautics and astronautics from MIT, finishing with a Ph.D. in 1975, and has been on the faculty there since 1980. His technical interests focus on energy conversion, propulsion, and turbomachinery, including micro heat engines, unsteady flow in turbomachinery, turbine heat transfer, advanced instrumentation, hydroacoustics, and the application of active control to aeropropulsion systems. He is an active consultant to the gas turbine and aerospace industries. His awards include four Best Paper awards from the International Gas Turbine Institute and the ADME Gas Turbine Award. He is a member of the NRC Air Force Science and Technology Board. Professor Epstein is a fellow of the American Institute of Aeronautics and Astronautics and a member of the National Academy of Engineering.

Roger E. Fisher is director for Department of Defense Programs at Lawrence Livermore National Laboratory. In this capacity, he works with other laboratory directorates to support the Department of Defense and ensure that the laboratory is meeting national security needs, especially in the area of nonnuclear defense technologies. Dr. Fisher's research background is in advanced weapon and strike systems, with a focus on maneuverability and penetration issues. From 1994 to 1996, he served as deputy assistant secretary for research and development in the Office of the Assistant Secretary for Defense Programs at the Department of Energy (DOE). Prior to joining DOE, he was assigned to the Office of the Secretary of Defense, where he managed the Department of Defense strategy for improving precision strike warfare. Dr. Fisher has held numerous senior government positions throughout his more than 30-year career, including science advisor for the U.S. Third Fleet and advanced technical advisor to the Chief of Naval Operations. Dr. Fisher's interests include aerodynamics. He is an FAA-certified commercial pilot.

Ray “M” Franklin is a retired U.S. Marine Corps Major General who once headed the Marine Corps R&D effort. Today, General Franklin serves as a defense consultant, primarily on issues of amphibious warfare and force projection. He is particularly knowledgeable about research and development (6.2 through 6.4), systems acquisition, and military operations such as amphibious warfare. A naval aviator, General Franklin has experience in both rotary- and fixed-wing aircraft. He has participated in studies for the Naval Research Advisory Committee (countermine capabilities and littoral warfare).

Suggested Citation:"A Committee Biographies." National Research Council. 2000. Review of ONR's Uninhabited Combat Air Vehicles Program. Washington, DC: The National Academies Press. doi: 10.17226/9885.
×

Norman D. Geddes is president at Applied Systems Intelligence, Inc. (ASII). ASII provides support for the defense community and NASA, as well as commercial artificial intelligence applications for the aerospace and transportation industries. Dr. Geddes's research background is in intelligent control systems, particularly in decision aiding methods for automated vehicles. He has played a key role in the development and application of intelligent user interfaces based on artificial intelligence principles, including the modeling of human operator intentions. He is a graduate of U.S. Navy pilot training and an experienced tactical jet fighter pilot. Prior to his work in intelligent decision aiding, Dr. Geddes was director of system development for GEC Marconi Avionics. His professional society memberships include the American Institute of Aeronautics and Astronautics and the Institute of Electrical and Electronics Engineers.

Robert H. Gormley, a retired Rear Admiral, U.S. Navy, is president of The Oceanus Company, a technology advisory firm serving U.S. and foreign clients in aerospace, defense, and electronics. His expertise is in the technologies that impact airborne reconnaissance systems, unmanned aerial vehicles (UAVs), vertical/short takeoff and landing aircraft, weapon system combat survivability, military requirements formulation, and test and evaluation planning. In addition to his duties at Oceanus, Admiral Gormley serves as consultant to the DARPA/ USAF UCAV program office. As a former career naval officer and aviator, Admiral Gormley commanded the aircraft carrier USS John F. Kennedy as well as an air wing and fighter squadron during the Vietnam War. He also served in the Navy's Operational Test and Evaluation Force, Office of the Assistant Secretary of Defense (systems analysis), and as chief of studies, analysis, and war gaming for the Joint Chiefs of Staff. Admiral Gormley participates in national security studies undertaken by the NRC and has been a member of study panels of the Defense Science Board and the Naval Research Advisory Committee.

Harry W. Jenkins, a retired Major General, U.S. Marine Corps, is director of Business Development and Congressional Liaison at ITT Industries-Defense, where he is responsible for activities in support of tactical communications systems and airborne electronic warfare between the Navy, Marine Corps, National Guard, and appropriate committees in Congress. His operational background is in expeditionary warfare, particularly its mission use of C4I systems. During Operation Desert Storm, General Jenkins served as the Commanding General of the Fourth Marine Expeditionary Brigade, where he directed operational planning, training, and employment of the ground units, aviation assets, and command and control systems in the 17,000-man amphibious force. General Jenkins's last position before retirement from the U.S. Marine Corps was director of expeditionary warfare for the Chief of Naval Operations, where he initiated a detailed program for C4I system improvements for large-deck amphibious ships and reorganized the Navy's UAV efforts for operations from aircraft carriers and amphibious ships. He is a member of numerous professional societies, including the Navy League and the Aerospace Industries Association.

James D. Lang recently retired from the Boeing Company Phantom Works. Dr. Lang is an expert in autonomous vehicles, particularly in regard to issues of coordination. His 11-year service with Boeing (and McDonnell Douglas) followed 24 ½ years of service with the U.S. Air Force. His career involved engineering and R&D management, university teaching and research, flight test engineering, and flying duties as a command pilot and engineering test pilot. Dr. Lang is currently a member of the DARPA/U.S. Air Force/Boeing National Technical Advisory Board for the UCAV program; an ad hoc member of the U.S. Air Force Scientific Advisory Board; a consultant to the Ohio Aerospace Institute; an originator of a multidisciplinary university and industry research effort in dynamic lift; and a reviewer for NASA proposals and American Institute of Aeronautics and Astronautics design competitions. Dr. Lang has authored or coauthored 41 technical publications, including the textbook Aircraft Performance, Stability, and Control. He was elected as fellow of the Royal Aeronautical Society (England) in 1996.

Joseph B. Reagan is retired vice president and general manager of research and development at Lockheed Martin Missile and Space and was an officer of the Lockheed Martin Corporation. A member of the National Academy of Engineering, he has a strong background in defense technology development, particularly in space

Suggested Citation:"A Committee Biographies." National Research Council. 2000. Review of ONR's Uninhabited Combat Air Vehicles Program. Washington, DC: The National Academies Press. doi: 10.17226/9885.
×

and missile technologies. Dr. Reagan joined Lockheed nearly 40 years ago as a scientist. He led the Space Instrumentation Group for 10 years and was responsible for the development and on-orbit deployment of over 20 scientific payloads for NASA and the Department of Defense. His research interests included space sensors, radiation belt and solar particles, nuclear weapon effects, and the effects of radiation particles on spacecraft systems. As general manager of the R&D Division, he led over 750 scientists and engineers in the development of advanced technologies in the fields of optics, electro-optics, information software, cryogenics, guidance and controls, electronics, and materials. Today, Dr. Reagan is a director on the board of Southwall Technologies, Incorporated, a high-technology company specializing in the manufacture of thin-film coatings for high-performance residential, industrial, and automotive windows. He is also a director on the board of the Tech Museum of Innovation, where he is the chairman of the Education Committee. He is involved in numerous activities that foster the improvement of science and mathematics education in the United States. Dr. Reagan is a fellow of the American Institute of Aeronautics and Astronautics and is vice chair of the Naval Studies Board.

John P. Retelle, Jr., is manager of business development at Logicon Advanced Technology, a subsidiary of Northrop Grumman Corporation. Dr. Retelle's background is in airborne artificial intelligence, aeronautics, and advanced computing. His professional career of more than 30 years spans a wide range of senior positions in both industry and government. He began as a flight test engineer for the U.S. Air Force, where he conducted flight tests and simulations in transonic aircraft technology. Dr. Retelle also served as an associate professor at the U.S. Air Force Academy and as a program manger at DARPA. While at DARPA, he provided technology and program direction for advanced technology demonstrations in airborne artificial intelligence (Pilot's Associate) and aircraft design (X-29, X-31). Dr. Retelle recently served as president of PAR Government Systems Corporation, where he transitioned PAR's expertise in computing and sensor R&D to new information-intensive products beyond traditional Department of Defense markets. Dr. Retelle is a certified commercial pilot and a member of several professional societies, including the American Institute of Aeronautics and Astronautics and the Institute of Electrical and Electronics Engineers.

Howard E. Shrobe is associate director and principal research scientist at the Massachusetts Institute of Technology Artificial Intelligence Laboratory (MIT AIL). His research is in intelligent systems, particularly in knowledge-based software development. From 1994 to 1997, Dr. Shrobe served as assistant director and chief scientist of the DARPA Information Technology Office, where he was responsible for two programs: the Evolutionary Design of Complex Software and Information Survivability. At the MIT AIL, Dr. Shrobe's research efforts include knowledge-based collaboration, dynamic domain architecture, and intelligent information infrastructure projects.

John F. Walter is program area manager for the Strike Warfare Program Office of the Power Projection Systems Department at Johns Hopkins University Applied Physics Laboratory (JHU/APL). Dr. Walter's background is in precision strike weapons and associated autonomous support systems. His previous positions at JHU/ APL included project manager for the Tomahawk Land-Attack Project and technical area manager for autonomous flight control systems for the Harpoon Missile. Dr. Walter's research interests include laser physics, propagation, electro-optics, inertial navigation, and missile guidance. He is a member of the American Institute of Aeronautics and Astronautics and the Precision Strike Association Board of Directors.

Suggested Citation:"A Committee Biographies." National Research Council. 2000. Review of ONR's Uninhabited Combat Air Vehicles Program. Washington, DC: The National Academies Press. doi: 10.17226/9885.
×
Page 39
Suggested Citation:"A Committee Biographies." National Research Council. 2000. Review of ONR's Uninhabited Combat Air Vehicles Program. Washington, DC: The National Academies Press. doi: 10.17226/9885.
×
Page 40
Suggested Citation:"A Committee Biographies." National Research Council. 2000. Review of ONR's Uninhabited Combat Air Vehicles Program. Washington, DC: The National Academies Press. doi: 10.17226/9885.
×
Page 41
Suggested Citation:"A Committee Biographies." National Research Council. 2000. Review of ONR's Uninhabited Combat Air Vehicles Program. Washington, DC: The National Academies Press. doi: 10.17226/9885.
×
Page 42
Next: B Terms of Reference »
Review of ONR's Uninhabited Combat Air Vehicles Program Get This Book
×
 Review of ONR's Uninhabited Combat Air Vehicles Program
Buy Paperback | $29.00 Buy Ebook | $23.99
MyNAP members save 10% online.
Login or Register to save!
Download Free PDF

Joint Vision 20101 addresses the need for achieving military dominance through the application of new operational concepts. For the Department of the Navy, future operational concepts will hinge on a continuance of forward yet unobtrusive presence and the capability to influence events ashore as required. This capability will be enabled by the development and insertion into the forces of new technologies for providing command, control, and surveillance; battlespace dominance; power projection; and force sustainment. For example, unmanned aerial vehicles (UAVs) have recently proven to be valuable operational platforms for providing tactical intelligence by surveillance of the battlefield. To support naval force objectives, the Office of Naval Research (ONR) has established a research program within the Strike Technology Division (Code 351) of the Naval Expeditionary Warfare Science and Technology Department aimed at expanding the operational capabilities of UAVs to include not only surveillance and reconnaissance, but strike and logistics missions as well. This new class of autonomous vehicles, known as uninhabited combat air vehicles (UCAVs), is foreseen as being intelligent, recoverable, and highly maneuverable in support of future naval operations.

Review of ONR'S Uninhabited Combat Air Vehicles Program evaluates ONR's UCAV technology activities, including its vision documents and its science and technology roadmap (in areas of vehicle dynamics, communications, sensors, and autonomous agents) against criteria that would be selected by the committee, such as the relevance for meeting future naval priorities, the cost and time scale for its utilization, duplication of effort, and scientific and technical quality.

READ FREE ONLINE

  1. ×

    Welcome to OpenBook!

    You're looking at OpenBook, NAP.edu's online reading room since 1999. Based on feedback from you, our users, we've made some improvements that make it easier than ever to read thousands of publications on our website.

    Do you want to take a quick tour of the OpenBook's features?

    No Thanks Take a Tour »
  2. ×

    Show this book's table of contents, where you can jump to any chapter by name.

    « Back Next »
  3. ×

    ...or use these buttons to go back to the previous chapter or skip to the next one.

    « Back Next »
  4. ×

    Jump up to the previous page or down to the next one. Also, you can type in a page number and press Enter to go directly to that page in the book.

    « Back Next »
  5. ×

    Switch between the Original Pages, where you can read the report as it appeared in print, and Text Pages for the web version, where you can highlight and search the text.

    « Back Next »
  6. ×

    To search the entire text of this book, type in your search term here and press Enter.

    « Back Next »
  7. ×

    Share a link to this book page on your preferred social network or via email.

    « Back Next »
  8. ×

    View our suggested citation for this chapter.

    « Back Next »
  9. ×

    Ready to take your reading offline? Click here to buy this book in print or download it as a free PDF, if available.

    « Back Next »
Stay Connected!