Approximately 40% of the land that can support tropical closed forest now lacks it, primarily because of human action. By the late 1970s, according to estimates from the Food and Agricultural Organization and United Nations Environmental Programme, 7.6 million hectares or nearly 1% of the total cover is being permanently cleared or converted into the shifting-cultivation cycle. The absolute amount is 76,000 square kilometers (27,000 square miles) a year, greater than the area of West Virginia or the entire country of Costa Rica. In effect, most of this land is being permanently cleared, that is, reduced to a state in which natural reforestation will be very difficult if not impossible to achieve (Mellilo et al., 1985). This estimated loss of forest cover is close to that advanced by the tropical biologist Norman Myers in the mid-1970s, an assessment that was often challenged by scientists and conservationists as exaggerated and alarmist. The vindication of this early view should serve as a reminder always to take such doomsday scenarios seriously, even when they are based on incomplete information.

A straight-line extrapolation from the first of these figures, with identically absolute annual increments of forest-cover removal, leads to 2135 A.D. as the year in which all the remaining rain forest will be either clear-cut or seriously disturbed, mostly the former. By coincidence, this is close to the date (2150) that the World Bank has estimated the human population will plateau at 11 billion people (The World Bank, 1984). In fact, the continuing rise in human population indicates that a straight line estimate is much too conservative. Population pressures in the Third World will certainly continue to accelerate deforestation during the coming decades unless heroic measures are taken in conservation and resource management.

There is another reason to believe that the figures for forest cover removal present too sanguine a picture of the threat to biological diversity. In many local areas with high levels of endemicity, deforestation has proceeded very much faster than the overall average. Madagascar, possessor of one of the most distinctive floras and faunas in the world, has already lost 93% of its forest cover. The Atlantic coastal forest of Brazil, which so enchanted the young Darwin upon his arrival in 1832 (“wonder, astonishment & sublime devotion, fill & elevate the mind”), is 99% gone. In still poorer condition—in fact, essentially lost—are the forests of many of the smaller islands of Polynesia and the Caribbean.


No precise estimate can be made of the numbers of species being extinguished in the rain forests or in other major habitats, for the simple reason that we do not know the numbers of species originally present. However, there can be no doubt that extinction is proceeding far faster than it did prior to 1800. The basis for this statement is not the direct observation of extinction. To witness the death of the last member of a parrot or orchid species is a near impossibility. With the exception of the showiest birds, mammals, or flowering plants, biologists are reluctant to say with finality when a species has finally come to an end. There is always the chance (and hope) that a few more individuals will turn up in some remote forest remnant or other. But the vast majority of species are not monitored at all. Like the dead

The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement