opened the way for compact, efficient, high-power laser systems and advances in composite material and other receiver technologies permitting the development of large-area, lightweight receiver systems.

New Sampling Strategies

Present and planned space-based ozone sensors provide global coverage, but with relatively sparse sampling, i.e., a return time of typically 3 to 7 days on a given tract. This is a significant limitation, considering the large variability of concentrations at extratropical latitudes and in the troposphere. Measurements on a geostationary orbit would provide continuous data over spatial scenes representing one-third of a hemisphere. Nadir observation of O3, CO, and H2O with ~2 km vertical resolution down to the surface could be achieved in a geostationary orbit with a Fourier transform spectrometer or a gas-correlation spectrometer.

REFERENCES

Attmannspacher, J. de la Noe, D. De Muer, J. Lenoble, G. Megie, J. Pelon, P. Pruvost, and R. Reiter. 1989. European validation of SAGE II ozone profiles. J. Geophys. Res. 94: 8461-8466.

Cunnold, D.M., W.P. Chu, R.A. Barnes, M.P. McCormick, and R.E. Veiga. 1989. Validation of SAGE II ozone measurements. J. Geophys. Res. 94: 8447-8460.

Hilsenrath, E., P.K. Bhartia, R.P. Cebula, and C.G. Wellemeyer. 1997. Calibration and intercalibration of BUV satellite ozone data. J. Adv. Space Res. 19: 1345-1353.

Integrated Program Office (IPO), National Polar-orbiting Operational Environmental Satellite System (NPOESS). 1996. Integrated Operational Requirements Document (IORD) I. Joint Agency Requirements Group Administrators. 61 pp. + figures.

Intergovernmental Panel on Climate Change (IPCC). 1999. Special Report on Aviation and the Global Atmosphere. Cambridge, U.K.: Cambridge University Press.

Kaye, J.A., and A.J. Miller. 1997. Tropospheric ozone measurements and their use in validation of TOMS and SAGE data products. Earth Observer 9: 31-34.

Logan, J.A. 1994. Trends in the vertical distribution of ozone: An analysis of ozonesonde data. J. Geophys. Res. 99: 25553-25585.

Logan, J.A. 1999. An analysis of ozonesonde data for the lower stratosphere: Recommendations for testing models. J. Geophys. Res. 104: 16151-16170.

Logan, J.A., I.A. Megretskaia, A.J. Miller, G.C. Tiao, D. Choi, L. Zhang, L. Bishop, R. Stolarski, G.J. Labow, S.M. Hollandsworth, G.E. Bodeker, H. Claude, D. DeMuer, J.B. Kerr, D.W. Tarasick, S.J. Oltmans, B. Johnson, F. Schmidlin, J. Staehelin, P. Viatte, and O. Uchino. 1999. Trends in the vertical distribution of ozone: A comparison of two analyses of ozonesonde data. J. Geophys. Res. 104: 26373-26399.

National Oceanic and Atmospheric Administration (NOAA). 1989. National Plan for Stratospheric Monitoring and Early Detection of Change, 1988-1997. FCM-P17-1989. U.S. Department of Commerce, July.

Weatherhead, E.C., G.C. Reinsel, G.C. Tiao, X.L. Meng, D.S. Choi, W.K. Cheang, T. Keller, J. DeLuisi, D.J. Wuebbles, J.B. Kerr, A.J. Miller, S.J. Oltmans, and J.E. Frederick. 1998. Factors affecting the detection of trends: Statistical considerations and applications to environmental data. J. Geophys. Res. 103: 17149-17161.

World Meteorological Organization (WMO). 1999. Scientific Assessment of Ozone Depletion: 1998. Geneva: WMO.



The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement