ISSUES IN THE INTEGRATION OF RESEARCH AND OPERATIONAL SATELLITE SYSTEMS FOR CLIMATE RESEARCH

II. IMPLEMENTATION

Committee on Earth Studies

Space Studies Board

Commission on Physical Sciences, Mathematics, and Applications

National Research Council

NATIONAL ACADEMY PRESS
Washington, D.C.



The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement



Below are the first 10 and last 10 pages of uncorrected machine-read text (when available) of this chapter, followed by the top 30 algorithmically extracted key phrases from the chapter as a whole.
Intended to provide our own search engines and external engines with highly rich, chapter-representative searchable text on the opening pages of each chapter. Because it is UNCORRECTED material, please consider the following text as a useful but insufficient proxy for the authoritative book pages.

Do not use for reproduction, copying, pasting, or reading; exclusively for search engines.

OCR for page R1
Issues in the Integration of Research and Operational Satellite Systems for Climate Research: II. Implementation ISSUES IN THE INTEGRATION OF RESEARCH AND OPERATIONAL SATELLITE SYSTEMS FOR CLIMATE RESEARCH II. IMPLEMENTATION Committee on Earth Studies Space Studies Board Commission on Physical Sciences, Mathematics, and Applications National Research Council NATIONAL ACADEMY PRESS Washington, D.C.

OCR for page R1
Issues in the Integration of Research and Operational Satellite Systems for Climate Research: II. Implementation NOTICE: The project that is the subject of this report was approved by the Governing Board of the National Research Council, whose members are drawn from the councils of the National Academy of Sciences, the National Academy of Engineering, and the Institute of Medicine. The members of the committee responsible for the report were chosen for their special competences and with regard for appropriate balance. Support for this project was provided by National Aeronautics and Space Administration contract NASW-96013 and National Oceanic and Atmospheric Administration contracts 50-DGNE-5-00210 and 50-DKNA-6-90040. Any opinions, findings, conclusions, or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the sponsors. International Standard Book Number 0-309-06994-7 Copies of this report are available free of charge from: Space Studies Board National Research Council 2101 Constitution Avenue, NW Washington, DC 20418 Copyright 2000 by the National Academy of Sciences. All rights reserved. Printed in the United States of America

OCR for page R1
Issues in the Integration of Research and Operational Satellite Systems for Climate Research: II. Implementation THE NATIONAL ACADEMIES National Academy of Sciences National Academy of Engineering Institute of Medicine National Research Council The National Academy of Sciences is a private, nonprofit, self-perpetuating society of distinguished scholars engaged in scientific and engineering research, dedicated to the furtherance of science and technology and to their use for the general welfare. Upon the authority of the charter granted to it by the Congress in 1863, the Academy has a mandate that requires it to advise the federal government on scientific and technical matters. Dr. Bruce M. Alberts is president of the National Academy of Sciences. The National Academy of Engineering was established in 1964, under the charter of the National Academy of Sciences, as a parallel organization of outstanding engineers. It is autonomous in its administration and in the selection of its members, sharing with the National Academy of Sciences the responsibility for advising the federal government. The National Academy of Engineering also sponsors engineering programs aimed at meeting national needs, encourages education and research, and recognizes the superior achievements of engineers. Dr. William A. Wulf is president of the National Academy of Engineering. The Institute of Medicine was established in 1970 by the National Academy of Sciences to secure the services of eminent members of appropriate professions in the examination of policy matters pertaining to the health of the public. The Institute acts under the responsibility given to the National Academy of Sciences by its congressional charter to be an adviser to the federal government and, upon its own initiative, to identify issues of medical care, research, and education. Dr. Kenneth I. Shine is president of the Institute of Medicine. The National Research Council was organized by the National Academy of Sciences in 1916 to associate the broad community of science and technology with the Academy’s purposes of furthering knowledge and advising the federal government. Functioning in accordance with general policies determined by the Academy, the Council has become the principal operating agency of both the National Academy of Sciences and the National Academy of Engineering in providing services to the government, the public, and the scientific and engineering communities. The Council is administered jointly by both Academies and the Institute of Medicine. Dr. Bruce M. Alberts and Dr. William A. Wulf are chairman and vice chairman, respectively, of the National Research Council.

OCR for page R1
Issues in the Integration of Research and Operational Satellite Systems for Climate Research: II. Implementation This page intentionally left blank.

OCR for page R1
Issues in the Integration of Research and Operational Satellite Systems for Climate Research: II. Implementation COMMITTEE ON EARTH STUDIES MARK R. ABBOTT, Oregon State University, Chair JOHN R. CHRISTY, University of Alabama, Huntsville CATHERINE GAUTIER, University of California, Santa Barbara CHRISTOPHER O. JUSTICE, University of Virginia RALPH F. MILLIFF, National Center for Atmospheric Research SCOTT PACE, RAND DALLAS L. PECK, U.S. Geological Survey (retired) MICHAEL J. PRATHER, University of California, Irvine R. KEITH RANEY, Johns Hopkins University Applied Physics Laboratory DAVID T. SANDWELL, Scripps Institution of Oceanography LAWRENCE C. SCHOLZ, West Orange, New Jersey CARL F. SCHUELER, Raytheon Santa Barbara Remote Sensing GRAEME L. STEPHENS, Colorado State University FAWWAZ T. ULABY, University of Michigan SUSAN L. USTIN, University of California, Davis FRANK J. WENTZ, Remote Sensing Systems EDWARD F. ZALEWSKI, University of Arizona Staff ARTHUR A. CHARO, Senior Program Officer INA B. ALTERMAN, Senior Program Officer THERESA M. FISHER, Senior Project Assistant

OCR for page R1
Issues in the Integration of Research and Operational Satellite Systems for Climate Research: II. Implementation SPACE STUDIES BOARD CLAUDE R. CANIZARES, Massachusetts Institute of Technology, Chair MARK R. ABBOTT, Oregon State University FRAN BAGENAL, University of Colorado DANIEL N. BAKER, University of Colorado ROBERT E. CLELAND, University of Washington MARILYN L. FOGEL, Carnegie Institution of Washington BILL GREEN, Former Member, U.S. House of Representatives JOHN H. HOPPS, JR., Northwestern University CHRIS J. JOHANNSEN, Purdue University RICHARD G. KRON, University of Chicago JONATHAN I. LUNINE, University of Arizona ROBERTA BALSTAD MILLER, Columbia University GARY J. OLSEN, University of Illinois at Urbana-Champaign MARY JANE OSBORN, University of Connecticut Health Center GEORGE A. PAULIKAS, The Aerospace Corporation JOYCE E. PENNER, University of Michigan THOMAS A. PRINCE, California Institute of Technology PEDRO L. RUSTAN, JR., U.S. Air Force (retired) GEORGE L. SISCOE, Boston University EUGENE B. SKOLNIKOFF, Massachusetts Institute of Technology MITCHELL SOGIN, Marine Biological Laboratory NORMAN E. THAGARD, Florida State University ALAN M. TITLE, Lockheed Martin Advanced Technology Center RAYMOND VISKANTA, Purdue University PETER VOORHEES, Northwestern University JOHN A. WOOD, Harvard-Smithsonian Center for Astrophysics JOSEPH K. ALEXANDER, Director

OCR for page R1
Issues in the Integration of Research and Operational Satellite Systems for Climate Research: II. Implementation COMMISSION ON PHYSICAL SCIENCES, MATHEMATICS, AND APPLICATIONS PETER M. BANKS, ERIM International, Inc. (retired), Co-Chair WILLIAM H. PRESS, Los Alamos National Laboratory, Co-Chair WILLIAM F. BALLHAUS, JR., The Aerospace Corporation SHIRLEY CHIANG, University of California at Davis MARSHALL H. COHEN, California Institute of Technology RONALD G. DOUGLAS, Texas A&M University SAMUEL H. FULLER, Analog Devices, Inc. MICHAEL F. GOODCHILD, University of California at Santa Barbara MARTHA P. HAYNES, Cornell University WESLEY T. HUNTRESS, JR., Carnegie Institution CAROL M. JANTZEN, Westinghouse Savannah River Company PAUL G. KAMINSKI, Technovation, Inc. KENNETH H. KELLER, University of Minnesota JOHN R. KREICK, Sanders, a Lockheed Martin Company (retired) MARSHA I. LESTER, University of Pennsylvania W. CARL LINEBERGER, University of Colorado DUSA M. McDUFF, State University of New York at Stony Brook JANET L. NORWOOD, Former Commissioner, U.S. Bureau of Labor Statistics M. ELISABETH PATÉ-CORNELL, Stanford University NICHOLAS P. SAMIOS, Brookhaven National Laboratory ROBERT J. SPINRAD, Xerox PARC (retired) JAMES F. HINCHMAN, Acting Executive Director

OCR for page R1
Issues in the Integration of Research and Operational Satellite Systems for Climate Research: II. Implementation This page intentionally left blank.

OCR for page R1
Issues in the Integration of Research and Operational Satellite Systems for Climate Research: II. Implementation Foreword This is the second of two Space Studies Board reports that address the complex issue of incorporating the needs of climate research into the National Polar-orbiting Operational Environmental Satellite System (NPOESS). NPOESS, which has been driven by the imperative of reliably providing short-term weather information, is itself a union of heretofore separate civilian and military programs. It is a marriage of convenience to eliminate needless duplication and reduce cost, one that appears to be working. The same considerations of expediency and economy motivate the present attempts to add to NPOESS the goals of climate research. The technical complexities of combining seemingly disparate requirements are accompanied by the programmatic complexities of forging further connections among three different agencies, with different mandates, cultures, and congressional appropriators. Yet the stakes are very high, and each agency gains significantly by finding ways to cooperate, as do the taxpayers. Beyond cost savings, benefits include the possibility that long-term climate observations will reveal new phenomena of interest to weather forecasters, as happened with the El Niño/Southern Oscillation. Conversely, climate researchers can often make good use of operational data. Necessity is the mother of invention, and the needs of all the parties involved in NPOESS should conspire to foster creative solutions to make this effort work. Although it has often been said that research and operational requirements are incommensurate, this report and the phase one report (Science and Design) accentuate the degree to which they are complementary and could be made compatible. The reports provide guidelines for achieving the desired integration to the mutual benefit of all parties. Although a significant level of commitment will be needed to surmount the very real technical and programmatic impediments, the public interest would be well served by a positive outcome. Claude R. Canizares, Chair Space Studies Board

OCR for page R1
Issues in the Integration of Research and Operational Satellite Systems for Climate Research: II. Implementation This page intentionally left blank.

OCR for page R1
Issues in the Integration of Research and Operational Satellite Systems for Climate Research: II. Implementation Preface This report is the final product of a Committee on Earth Studies (CES) examination of technical and programmatic issues related to the integration of research and operational Earth observation satellite systems in the support of climate research (see Appendix A for the statement of task). In a brief letter report (“On Climate Change Research Measurements from NPOESS,” May 27, 1998), the committee provided an overview of the many scientific, technical, and programmatic issues associated with integrating the measurement responsibilities of research agencies with those of operational agencies. These issues are analyzed in detail in the committee’s two-part report, Issues in the Integration of Research and Operational Satellite Systems for Climate Research: I. Science and Design1 and II. Implementation, this volume. In both parts of this study, the committee uses the framework of requirements for climate research—monitoring climate change as well as understanding climate processes and impacts—as the basis for its investigation. In Science and Design, the committee examined whether climate research requirements could be met with the planned National Polar-orbiting Operational Environmental Satellite System (NPOESS) that is being developed by the Integrated Program Office (IPO), a triagency office reporting through the National Oceanic and Atmospheric Administration (NOAA) to an executive committee composed of under secretary and administrator level officials of the Departments of Commerce and Defense and the National Aeronautics and Space Administration (NASA). The report also examined programmatic issues related to the inclusion of climate research requirements in NPOESS. To accomplish this, the committee selected, as case studies, eight measurement sets that are (1) of interest to the operational user community and (2) illustrative of the range of implementation strategies that might be considered in integrating NASA Earth Science Enterprise (ESE) and the NPOESS programs. The committee found that the operational and research systems being developed in the ESE and NPOESS programs can together potentially meet the need for long-term measurements for data continuity as well as the need for a flexible observing system that can take advantage of emerging scientific insights and technical advances. The current volume, Implementation, focuses on approaches that will ensure interoperability between research and operational sensors and allow the infusion of new technology. The committee was particularly 1   National Research Council, Space Studies Board. 2000. Issues in the Integration of Research and Operational Satellite Systems for Climate Research: I. Science and Design. National Academy Press, Washington, D.C.

OCR for page R1
Issues in the Integration of Research and Operational Satellite Systems for Climate Research: II. Implementation interested in comparatively low-cost investments that could be made in planned satellite programs such as NPOESS that would increase its utility to the global change research community. Accordingly, the committee devoted much of its effort to an analysis of issues related to sensor calibration and validation (Chapter 2 and Appendix C). The committee also offers strategies for ensuring continuity across successive sensors and briefly discusses issues related to data systems for NPOESS.2 To support its work, the committee organized a 2-day workshop in July 1999, “Workshop on the Integration of IPO/NPOESS and NASA/ESE Capabilities for Climate Research” (see Appendix B for a summary of the discussions and a list of participants). Participants at the workshop—members of the committee, scientists involved in climate and related research areas, and officials from NASA and NOAA—considered opportunities in the near term to make incremental investments that would improve the suitability of operational missions for climate research. 2   Partly as a result of this work, NOAA and NASA asked the committee to undertake a short-duration study of climate data processing and archive strategies for the NPOESS Preparatory Project (NPP) and NPOESS. See National Research Council, Space Studies Board. 2000. Ensuring the Climate Record from the NPP and NPOESS Meteorological Satellites, National Academy Press, Washington, D.C.

OCR for page R1
Issues in the Integration of Research and Operational Satellite Systems for Climate Research: II. Implementation Acknowledgment of Reviewers This report has been reviewed in draft form by individuals chosen for their diverse perspectives and technical expertise, in accordance with procedures approved by the National Research Council’s (NRC’s) Report Review Committee. The purpose of this independent review is to provide candid and critical comments that will assist the institution in making its published report as sound as possible and to ensure that the report meets institutional standards for objectivity, evidence, and responsiveness to the study charge. The review comments and draft manuscript remain confidential to protect the integrity of the deliberative process. The committee wishes to thank the following individuals for their review of this report: Peter Cornillon, University of Rhode Island; Dennis L. Hartmann, University of Washington; Allan Sherman, Lockheed Martin; Roy W. Spencer, NASA Marshall Space Flight Center; William E. Stoney, Mitretek Systems; John Townshend, University of Maryland; and Zhengming Wan, University of California, Santa Barbara. Although the reviewers listed above have provided many constructive comments and suggestions, they were not asked to endorse the conclusions or recommendations, nor did they see the final draft of the report before its release. The review of this report was overseen by Wesley T. Huntress, Jr., Carnegie Institution, appointed by the Commission on Physical Sciences, Mathematics, and Applications, and Eugene M. Rasmusson, University of Maryland, appointed by the Report Review Committee, who were responsible for making certain that an independent examination of this report was carried out in accordance with institutional procedures and that all review comments were carefully considered. Responsibility for the final content of this report rests solely with the authoring committee and the institution.

OCR for page R1
Issues in the Integration of Research and Operational Satellite Systems for Climate Research: II. Implementation This page intentionally left blank.

OCR for page R1
Issues in the Integration of Research and Operational Satellite Systems for Climate Research: II. Implementation Contents     EXECUTIVE SUMMARY   1 1   INTRODUCTION   7      Characteristics and Requirements of Research and Operational Missions,   7      Key Implementation Issues,   8      Climate Data Records,   9      References,   9 2   CALIBRATION AND VALIDATION   11      Introduction,   11      Instrument Characterization,   13      Sensor Calibration,   14      Calibration Verification,   16      Data Quality Assessment,   17      Data Product Validation,   17      Conclusions and Recommendations,   18      References,   19 3   DATA CONTINUITY   20      Key Issues and Lessons Learned,   20      NPOESS Replenishment Strategy,   24      Recommendations,   27      References,   28 4   DATA SYSTEMS   29      Introduction,   29      Operational Versus Research Needs,   30      Long-term Archiving of Raw Data Records,   31      Architecture for the NPOESS Climate Data System,   32      Evolution, Reprocessing, and Multiple Versions of Data Sets,   33      Existing NASA and NOAA Data Centers,   34

OCR for page R1
Issues in the Integration of Research and Operational Satellite Systems for Climate Research: II. Implementation      Conclusion,   34      Recommendations,   35      References,   35 5   TECHNOLOGY INSERTION   36      Introduction,   36      Basic Considerations,   37      Technical Issues,   39      Programmatic Issues,   41      A Continuing NPOESS System Augmentation Project,   43      NASA Strategies and Plans for Technology Development,   43      Findings,   46      Recommendations,   47      References,   48     APPENDIXES         A Statement of Task,   51     B Workshop Discussion and Participants,   53     C Solar Reflection Region Measurements,   76     D Acronyms and Abbreviations,   80