National Academies Press: OpenBook
« Previous: Technology Insertion
Suggested Citation:"Appendix A: Statement of Task." National Research Council. 2000. Issues in the Integration of Research and Operational Satellite Systems for Climate Research: Part II. Implementation. Washington, DC: The National Academies Press. doi: 10.17226/9966.
×

A
Statement of Task

INTEGRATION OF RESEARCH AND OPERATIONAL SATELLITE SYSTEMS

Background NASA officials have long envisioned developing operational versions of some of the advanced climate and weather monitoring instruments planned for the Earth Observing System (EOS) afternoon (PM) satellite. In the 1995 EOS “Reshape” exercise, NASA adopted the assumption that some of the measurements in the second PM series would be supplied by the Department of Commerce (NOAA) and Department of Defense (Air Force) National Polar-orbiting Operational Environmental Satellite System (NPOESS). NASA is about to begin intensive planning for the EOS-PM mission. NASA is also examining the potential for advanced instruments on future versions of the NOAA GOES (Geostationary Operational Environmental Satellite) satellites to be integrated into the EOS program.

Integrating NOAA-DOD operational weather satellites into NASA’s Earth Observing System program poses numerous interrelated technical and organizational challenges. By definition, the “operational” weather programs of NOAA and DOD must meet the needs of users who require unbroken data streams. Historically, development of operational instrumentation has been successful when managed with a disciplined, conservative approach towards the introduction of new technology. In addition to minimizing technical risk, minimizing cost has been an important factor in the success of operational programs, especially for NOAA.

Achieving NASA research aims on a satellite designed to meet the operational needs of the civil and defense communities will require agreement on joint agency requirements, and coordination of instrument development activities, launch schedules, and precursor flight activities. The proposed study will include an analysis of these issues, especially those related to (1) sensor design and development, (2) program synchronization, and (3) data continuity and interoperability.

Plan The proposed study will analyze generic issues related to the transition of NASA research satellite instrumentation for NOAA operational use. The study will focus in particular on observational priorities and technical issues related to the potential integration of the NOAA-DOD NPOESS satellite with the NASA EOS “PM” series of satellites. Among the key questions to be addressed are:

Suggested Citation:"Appendix A: Statement of Task." National Research Council. 2000. Issues in the Integration of Research and Operational Satellite Systems for Climate Research: Part II. Implementation. Washington, DC: The National Academies Press. doi: 10.17226/9966.
×
  1. Sensors and Measurements

    • How well do current NPOESS IORD requirements match NASA research requirements for the EOS PM-2 satellite series? Are there any overlaps with AM-2 or CHEM requirements?

    • If additional capability is needed for climate monitoring goals, what is this capability and what are technical and programmatic implications?

    • Are there instruments that could be added to the operational suite, e.g., a scatterometer or SAR? What issues must be addressed in adding capabilities of this kind?

    • What are the requirements for on-orbit or ready-to-launch replacement instrumentation for research and operational goals? Are there common spares strategies that could serve both research and operational needs satisfactorily?

    • What issues might arise should NPOESS be tasked to undertake new missions such as long-term climate monitoring?

  1. Program Synchronization

    • What are the critical milestones in integrating research and operational space systems? Are any disjoints apparent?

    • What are possible approaches to establishing program flexibility to ensure that both research and operational missions are achieved in the face of inevitable schedule changes?

  1. Data Continuity and Interoperability

    • What are the highest priorities for continuous/interoperable research datasets?

    • What are technical approaches to ensuring data (a) interoperability between research and operational sensors and (b) continuity in the face of evolving sensor technology?

    • What is the status of data storage, retrieval, and access planning for research use of NOAA operational data or possible NPOESS-obtained climate data?

A report summarizing the findings and recommendations that address technical items (1) and (2) (‘Sensors and Measurements’) and ‘Program Synchronization’) will be the Phase 1 report. Item (3) ‘Data Continuity and Interoperability’ will be addressed in the Phase 2 report.

Suggested Citation:"Appendix A: Statement of Task." National Research Council. 2000. Issues in the Integration of Research and Operational Satellite Systems for Climate Research: Part II. Implementation. Washington, DC: The National Academies Press. doi: 10.17226/9966.
×
Page 51
Suggested Citation:"Appendix A: Statement of Task." National Research Council. 2000. Issues in the Integration of Research and Operational Satellite Systems for Climate Research: Part II. Implementation. Washington, DC: The National Academies Press. doi: 10.17226/9966.
×
Page 52
Next: Appendix B: Workshop Discussion and Participants »
Issues in the Integration of Research and Operational Satellite Systems for Climate Research: Part II. Implementation Get This Book
×
Buy Paperback | $29.00 Buy Ebook | $23.99
MyNAP members save 10% online.
Login or Register to save!
Download Free PDF

This is the second of two Space Studies Board reports that address the complex issue of incorporating the needs of climate research into the National Polar-orbiting Operational Environmental Satellite System (NPOESS). NPOESS, which has been driven by the imperative of reliably providing short-term weather information, is itself a union of heretofore separate civilian and military programs. It is a marriage of convenience to eliminate needless duplication and reduce cost, one that appears to be working.

The same considerations of expediency and economy motivate the present attempts to add to NPOESS the goals of climate research. The technical complexities of combining seemingly disparate requirements are accompanied by the programmatic complexities of forging further connections among three different agencies, with different mandates, cultures, and congressional appropriators. Yet the stakes are very high, and each agency gains significantly by finding ways to cooperate, as do the taxpayers. Beyond cost savings, benefits include the possibility that long-term climate observations will reveal new phenomena of interest to weather forecasters, as happened with the El Niño/Southern Oscillation. Conversely, climate researchers can often make good use of operational data.

Necessity is the mother of invention, and the needs of all the parties involved in NPOESS should conspire to foster creative solutions to make this effort work. Although it has often been said that research and operational requirements are incommensurate, this report and the phase one report (Science and Design) accentuate the degree to which they are complementary and could be made compatible. The reports provide guidelines for achieving the desired integration to the mutual benefit of all parties. Although a significant level of commitment will be needed to surmount the very real technical and programmatic impediments, the public interest would be well served by a positive outcome.

  1. ×

    Welcome to OpenBook!

    You're looking at OpenBook, NAP.edu's online reading room since 1999. Based on feedback from you, our users, we've made some improvements that make it easier than ever to read thousands of publications on our website.

    Do you want to take a quick tour of the OpenBook's features?

    No Thanks Take a Tour »
  2. ×

    Show this book's table of contents, where you can jump to any chapter by name.

    « Back Next »
  3. ×

    ...or use these buttons to go back to the previous chapter or skip to the next one.

    « Back Next »
  4. ×

    Jump up to the previous page or down to the next one. Also, you can type in a page number and press Enter to go directly to that page in the book.

    « Back Next »
  5. ×

    Switch between the Original Pages, where you can read the report as it appeared in print, and Text Pages for the web version, where you can highlight and search the text.

    « Back Next »
  6. ×

    To search the entire text of this book, type in your search term here and press Enter.

    « Back Next »
  7. ×

    Share a link to this book page on your preferred social network or via email.

    « Back Next »
  8. ×

    View our suggested citation for this chapter.

    « Back Next »
  9. ×

    Ready to take your reading offline? Click here to buy this book in print or download it as a free PDF, if available.

    « Back Next »
Stay Connected!