3
Findings and Recommendations

Basic and applied research in Earth science is guided by an ambitious scientific program to understand the Earth and its history through the multidisciplinary study of the dynamics and evolution of terrestrial systems. Chapter 1 discussed how societal needs drive research on system-level problems and how this approach is being enabled by across-the-board improvements in observational capabilities and information technologies. Chapter 2 reviewed the status and prospects of basic research in six important problem areas spanning a wide range of future activity in Earth science:

  1. integrative studies of the Critical Zone, the heterogeneous, near-surface environment, where complex interactions involving rock, soil, water, air, and living organisms regulate natural habitats and determine the availability of life-sustaining resources,

  2. geobiology, which addresses the interactions of biological and geological processes, the evolution of life on Earth, and the factors that have shaped the biosphere,

  3. research on Earth and planetary materials, which uses advanced instrumentation and theory to determine properties at the molecular level as the basis for understanding materials and processes at all scales relevant to planets,

  4. investigations of the three-dimensional structure and composition of the continents, the geologic record of continental formation and assembly, and the physical processes in active continental deformation zones,

  5. studies of the Earth’s deep interior to define better its structure, composition and state and to understand the machinery of mantle convection and the core dynamo, and



The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement



Below are the first 10 and last 10 pages of uncorrected machine-read text (when available) of this chapter, followed by the top 30 algorithmically extracted key phrases from the chapter as a whole.
Intended to provide our own search engines and external engines with highly rich, chapter-representative searchable text on the opening pages of each chapter. Because it is UNCORRECTED material, please consider the following text as a useful but insufficient proxy for the authoritative book pages.

Do not use for reproduction, copying, pasting, or reading; exclusively for search engines.

OCR for page 89
Basic Research Opportunities in Earth Science 3 Findings and Recommendations Basic and applied research in Earth science is guided by an ambitious scientific program to understand the Earth and its history through the multidisciplinary study of the dynamics and evolution of terrestrial systems. Chapter 1 discussed how societal needs drive research on system-level problems and how this approach is being enabled by across-the-board improvements in observational capabilities and information technologies. Chapter 2 reviewed the status and prospects of basic research in six important problem areas spanning a wide range of future activity in Earth science: integrative studies of the Critical Zone, the heterogeneous, near-surface environment, where complex interactions involving rock, soil, water, air, and living organisms regulate natural habitats and determine the availability of life-sustaining resources, geobiology, which addresses the interactions of biological and geological processes, the evolution of life on Earth, and the factors that have shaped the biosphere, research on Earth and planetary materials, which uses advanced instrumentation and theory to determine properties at the molecular level as the basis for understanding materials and processes at all scales relevant to planets, investigations of the three-dimensional structure and composition of the continents, the geologic record of continental formation and assembly, and the physical processes in active continental deformation zones, studies of the Earth’s deep interior to define better its structure, composition and state and to understand the machinery of mantle convection and the core dynamo, and

OCR for page 89
Basic Research Opportunities in Earth Science planetary science using extraterrestrial materials, as well as astronomical, space-based, and laboratory observations, to investigate the origin, evolution, and present structure of planetary bodies, including the Earth. This chapter presents the findings and recommendations that have been drawn by the committee from its overview of the science opportunities and societal needs. In constructing its recommendations, the committee was cognizant that the National Science Foundation (NSF) must continually strive to balance its funding of basic research among (1) core programs that support investigator-driven, disciplinary activities; (2) problem-focused programs of multidisciplinary research; and (3) equipment-oriented programs for developing new instrumentation and facilities. It is the committee’s conclusion that the Earth Science Division (EAR) has done an excellent job at maintaining such a balance in the past. The committee therefore offers recommendations relevant to all three programmatic areas that, if implemented, will address the science requirements for the next decade. It also comments on opportunities for coordinating EAR-sponsored research with programmatic activities in other NSF divisions and with other agencies. LONG-TERM SUPPORT OF INVESTIGATOR-DRIVEN SCIENCE It is commonly believed that many of the most significant conceptual breakthroughs in science come at the hands of individual investigators or small groups of researchers, rather than through structured collaborations. As indicated by the workshop reports, letters to the committee, and the 1998 report of the EAR visiting committee, the Earth science community supports the notion that individual investigators should be free to pursue their own research directions. One letter from an Earth scientist put it succinctly: “Too much emphasis on ‘large’ science at the expense of ‘small’ science will, over time, stifle creativity.” It is particularly important that creative young scientists be allowed to conduct scientific research of their own conception, rather than projects conforming to the current scientific consensus, which is often articulated by established groups (such as National Research Council [NRC] committees). The committee strongly endorses this point of view. Finding: EAR funding of research projects initiated and conducted by individual investigators and small groups of investigators is the single most important mechanism for maintaining and enhancing disciplinary strength in Earth science.

OCR for page 89
Basic Research Opportunities in Earth Science EAR is currently divided into five disciplinary core programs based on divisions among the constituent fields of Earth science—Geology and Paleontology (G&P), Geophysics, Hydrologic Sciences, Petrology and Geochemistry, and Tectonics—and three core programs that are intrinsically multidisciplinary—Continental Dynamics, Education and Human Resources, and Instrumentation and Facilities (see Appendix A ). Proposals from individuals or small groups of investigators are funded primarily through the first five. The strength of these core programs is thus critical to sustaining advancement in all aspects of Earth science, in particular new avenues of research and multidisciplinary investigations of Earth processes and systems. 1 Core funding of individual investigators also underpins research-based education at NSF (see “Education” below), as well as the continuing education of recent graduates who must learn the value of innovation and independence to be successful researchers in their own right. Strict disciplinary divisions are recognized to be artificial, and an increasing number of investigator-initiated “small-science” projects span two or more disciplines (see Chapter 2 ). For this reason, NSF program managers can and do work together to evaluate and split-fund proposals. Flat budgets and declining buying power within the disciplinary core programs, as well as the sometimes narrow focus of review panels, have made it increasingly difficult to accommodate new areas of investigation within this structure, however. 2 The problem is particularly acute in two fields identified as exceptionally promising in Chapter 2 —geobiology, and Earth and planetary materials—for which major new support is justified. Outstanding research opportunities related to the multidisciplinary problems of the Critical Zone also warrant expansions in the traditional fields of geology and hydrology. 1   In their recent essay on the problems of interdisciplinary research, Norman Metzger and Richard Zare (Science, v. 283, p. 642-643, 1999) put forward this point in the following way: “Strong interdisciplinary programs can only be built in circumstances in which strong disciplinary programs already exist. It makes no sense to sacrifice successful disciplinary efforts to appease perceived interdisciplinary needs.” 2   According to the budget figures presented in Appendix A , the total 1999 expenditure in the EAR disciplinary core programs was $38 million, compared to $39 million in 1992 and $33 million in 1985. In terms of constant buying power, this represents a 23% decline in the funding of disciplinary core programs between 1985 and 1999. On the other hand, funding of other EAR program elements, including multidisciplinary research, instruments, facilities, and science and technology centers, more than tripled over the same period (see Figure A.1 ).

OCR for page 89
Basic Research Opportunities in Earth Science Geobiology Geobiology encompasses research on the interactions among biological, geological, and environmental processes on the evolution of life on Earth, and on the factors that have shaped the long-term evolution of both life forms and their environment. The development of new and powerful tools in the biological sciences (genomics, proteinomics, and developmental biology) and in geochemistry, mineralogy, stratigraphy, and paleontology offers unprecedented opportunities for advances. Two primary research directions are identified: Topics related to interactions between Earth systems and biologic processes: How the habitability of the Earth is affected by natural and anthropogenic environmental change Function and diversity of microbial life in a wide range of environmental systems, and the relative importance of biological and inorganic processes in weathering, soil formation, mineralization, and other geological and pedological processes Biogeochemical interactions and cycling among organisms, ecosystems, and the environment, including applications of geomicrobiology to monitoring and remediating environmental degradation Relationship between ecology and climate change, including the role of rare events in reshaping ecosystems and climate, from local to global scales Topics related to the origin and evolution of life on Earth: Biological and environmental controls on how species diversity changes through time, including ecological and biogeographic selectivity, and causes of extinction and survival Nature of evolutionary innovation through the integration of biological, fossil, and geochemical data Rates at which organisms, communities, and ecosystems are able to respond to environmental perturbation over short and long time scales. None of the existing core programs have the intellectual scope or sufficient resources to accommodate a prolonged emphasis on geobiology. The most closely related program within EAR is G&P, but it is already severely oversubscribed 3 and is thus unable to adequately cover many important biological and geochemical aspects of geobiology. 3   Over the past five years, G&P received approximately 290 proposals per year; its success rate was 20-25%, compared with an overall EAR success rate of 31%.

OCR for page 89
Basic Research Opportunities in Earth Science Recommendation: EAR should seek new funds for the long-term support of geobiology to permit studies of the interactions between biological and geological processes, the evolution of life on Earth, and the geologic factors that have shaped the biosphere. A geobiology program would be the basis for a powerful scientific partnership between Earth sciences and biological sciences, directed toward a comprehensive understanding of the relationship between life and its planetary environment. A successful program would integrate geological, paleontological, environmental, geochemical, pedological, oceanic, atmospheric, and many types of biological data. It would also add key biological perspectives to research initiatives in Earth and planetary materials, discussed below. Thus, it will be crucial to forge strong links between geobiology and existing programs within NSF, including the Ocean Sciences Division (OCE) (biogeochemical interactions between marine organisms and their environment); the Environmental Geochemistry and Biogeochemistry (EGB) Program (biogeochemical processes in the near-surface environment); the Earth System History (ESH) Program (ecology and climate change); Life in Extreme Environments (LExEn) (microorganisms in extreme environments and the origin of life), Water and Energy: Atmospheric, Vegetative, and Earth Interactions Program (Earth’s hydrologic and energy cycles); and the Biological Sciences Directorate (evolution of ecosystems, function of organisms as a function of their environment, microbial biology and growth in natural environments, and microbial processes in energy flow and nutrient cycling). Partnerships with other agencies will also be important, particularly the Department of Energy (DOE) (organic geochemistry, carbon cycle and bioremediation); U.S. Geological Survey (USGS) (surficial cycles and processes, and effects on contaminants on organisms); the Environmental Protection Agency (EPA) (environmental biology and microbes in the environment); the U.S. Department of Agriculture (USDA) (greenhouse gas budgets, microbial cycling of elements, soil development); the National Institutes of Health (NIH) (molecular biology and soil-borne pathogens); and the National Aeronautics and Space Administration (NASA) (astrobiology, response of terrestrial life to environmental change). A geobiology program would also sponsor a needed Earth science component to the new NSF initiative in Biocomplexity 4 —which is in many ways concerned about the central issues of “geocomplexity”—as well as those that may derive 4   The Biocomplexity Initiative is an NSF-wide multiyear effort to understand the nature and dynamics of biocomplexity in the environment. The first phase will focus on the functional interrelationships between microorganisms and biological, chemical, geological, physical, and social systems. See http://www.nsf.gov/home/crssprgm/be/ .

OCR for page 89
Basic Research Opportunities in Earth Science from the recommendations of the National Science Board’s Task Force on the Environment. Substantial effort will be needed to undertake the cross-disciplinary training required by geobiological inquiry (see “Education” below). Earth and Planetary Materials Research on Earth and planetary materials has emerged as a field distinct from, but highly complementary to, the well-established disciplines of geochemistry, geophysics, and petrology that are currently among the core programs at EAR. The major research domains encompass mineral physics, planetary materials research and their interfaces with geomicrobiology, soil science, and biomineralization (including nanocrystalline phases), rock physics, mineral and rock magnetism, and the science of mineral surfaces. The Earth and planetary materials community is identified through its use of distinct tools and methodologies characterized by an atomistic approach and its reliance on major experimental facilities. It serves the geophysical, geochemical, and geological communities, yet shares a close kinship with communities in chemistry, materials science, and condensed-matter physics. The laboratory-based measurements by researchers in this community are essential for the quantitative interpretation of observations of the Earth and planetary bodies made by geochemists, geophysicists, mineralogists, petrologists, and soil scientists. The committee has identified a number of opportunities for new research emphases in Earth and planetary materials: biomineralization (natural growth of minerals within organisms, as well as applications to the development of synthetic analogues), characterization of extraterrestrial samples (e.g., returns from Mars, comets, and interplanetary space), superhigh-pressure (terapascal) research, with applications to planetary and stellar interiors, nonlinear interactions and interfacial phenomena in rocks (e.g., strain localization; nonlinear wave propagation; fluid-mineral reactions, whether with aqueous fluids, magmatic fluids, or both; and coupling of chemical reactions and fracturing), nanophases and interfaces, including microbiology at interfaces (e.g., catalyzing or modulating geochemical reactions) and applications to the physics and chemistry of soils, quantum and molecular theory as applied to minerals and their interfaces (e.g., mineral interactions with fluids and gases) and aggregates (rocks and soils), and

OCR for page 89
Basic Research Opportunities in Earth Science studies of granular media, including the nonlinear physics of soils and loose aggregates. The potential for initiatives in these areas has been increased by numerous new collaborations of geoscientists with chemists, biologists, physicists and materials scientists. 5 Past successes in applying major facilities, such as synchrotron beamlines, argues for the community’s leading in the development of new facilities (e.g., new-generation neutron and X-ray beamlines and microanalytical tools) and their application to Earth, environmental and planetary problems. These are just becoming feasible, and their development, enhanced by recent major advances in theory, is being pursued in associated disciplines. Recommendation: EAR should seek new funds for the long-term support of investigator-initiated research on Earth and planetary materials to take advantage of major new facilities, advanced instrumentation and theory in an atomistic approach to properties and processes. A research program in Earth and planetary materials would offer a new mechanism to create more substantial linkages with existing programs outside EAR, including in NSF’s Astronomy Division (studies of planetary origins and interiors; superhigh-pressure research) and Division of Materials Research (research on complex oxides and other mineral-like materials), DOE (e.g., Basic Energy Sciences, Biological and Environmental Research, and Environmental Management), and NASA (e.g., Planetary Geology and Geophysics, and Cosmochemistry). Moreover, the scientists that study Earth and planetary materials have been at the forefront of research on nanomaterials and are well positioned, therefore, to contribute to the interagency National Nanotechnology Initiative. 6 Hydrology, Geology, and the Critical Zone Integrative studies of the Critical Zone will depend on strong disciplinary programs in soil science, hydrology, geobiology, sedimentology, stratigraphy, 5   Microscopic to Macroscopic: Opportunities in Mineral and Rock Physics and Chemistry, results of a workshop held in Scottsdale, Arizona, May 28-30, 1999. 6   The multiagency National Nanotechnology Initiative is concerned with the creation of useful materials, devices, and systems through the control of matter on the nanometer scale and the exploitation of novel properties and phenomena at that scale. See http://www2.whitehouse.gov/WH/EOP/OSTP/NSTC/html/committee/ct.html .

OCR for page 89
Basic Research Opportunities in Earth Science geomorphology, and coastal zone processes. Currently, research in these diverse fields is funded mainly through the G&P and Hydrologic Sciences core programs. Hydrology In hydrology, many of the advances of the last two decades have resulted from the increasing ability to measure with greater spatial and temporal resolution the fluxes and states that are critical for quantifying the water balance. Enhancements in computer and information technology have made possible, for example, the development and testing of distributed catchment models using remote-sensing information at scales ranging from tens of meters to tens of kilometers. Better characterization of the heterogeneous nature of subsurface flow has led to an improved understanding of the movement of groundwater and the fate of contaminants. Knowledge of the nature and severity of floods and droughts has increased, although much remains to be done particularly in connection with discerning human influences on the global energy and water balances and in forecasting hydrologic extremes. Understanding and quantifying the various chemical cycles of the Critical Zone require extremely accurate hydrologic balances for both very short and very long time spans. New efforts are required to measure and model the water pathways through vegetation and the vadose zone into the groundwater and below, as well as to determine the corresponding biogeochemical interactions and define human influences on hydrologic and ecologic systems. These efforts are needed in a variety of geologic, soil, climate, and vegetation settings and for spatial scales that range from a few meters at the hillslope scale to basin-wide and continental scales. Recommendation: Owing to the significant opportunities for progress in the understanding of hydrologic systems, particularly through coordinated studies of the Critical Zone, EAR should continue to build programs in the hydrologic sciences. Increased support of the hydrological science program would improve the success rate of proposals (19%) and complement the focused, largely intramural hydrology programs in the National Oceanic and Atmospheric Administration (NOAA) (e.g., the Global Energy and Water Cycle Experiment [GEWEX] Continental-Scale International Project) and the USGS Water Resources Division, as well as the remote-sensing hydrology programs in NASA (GEWEX, Land Surface Hydrology Program).

OCR for page 89
Basic Research Opportunities in Earth Science In some cases, the scientific problems will be best addressed by establishing long-term natural laboratories in specific climatic and land-use settings. The opportunities for Earth science research in natural laboratories are discussed further under “ Major Initiatives .” Contemporaneous investigations at diverse locations will be needed to ascertain the large-scale, climate-driven hydrologic connections that bear directly on the Critical Zone. The USGS, USDA, NOAA, and NASA will be important partners for EAR. The proposed Second International Hydrologic Decade may furnish significant opportunities for exercising this partnership. The primary goals of the decade—to reverse the decline in the development of hydrologic observing systems and to reduce uncertainties in the measurements—bear directly on Critical Zone research on flood and drought hazards and coupled ecologic-hydrologic systems. Geology The G&P program sponsors a wide range of research on physical, chemical, and biological processes that take place in the Critical Zone ( Appendix A ). This emphasis on the Critical Zone would be further strengthened by moving paleontology from G&P to Geobiology. Such a reorganization would also free up funds to address scientific problems that are related to the Critical Zone, but are not easily funded within the current program structure. For example, studies related to soils and coastal zone processes have received relatively little attention to date, in part because the scope of the research spans the Geosciences Directorate. For example, sedimentary and geochemical fluxes in the near-shore environment are important indicators of Critical Zone processes, but NSF programmatic areas typically stop at the shoreline—the marine aspects are funded through OCE and are thus separated from the sedimentary aspects, which must vie for support from EAR. 7 Similarly, soils constitute a major reservoir of carbon, but studies on the release and sequestration of carbon and other greenhouse gases are funded primarily through the Atmospheric Sciences Division (ATM) and OCE, divisions that have little expertise in soils. EAR, on the other hand, is only beginning to recognize the contributions that soil scientists can make to the study of the Earth. Recommendation: EAR should enhance multidisciplinary studies of the Critical Zone, placing special attention on strengthening soil science and the study of coastal zone processes. 7   Coastal Sedimentary Geology Research: A Critical National and Global Priority, results of a workshop held in Honolulu, Hawaii, November 9-12, 1999.

OCR for page 89
Basic Research Opportunities in Earth Science The committee recognizes that much work is needed to implement a research program on the Critical Zone that is sufficiently visionary and broadly based to address the wide range of fundamental and applied problems involved in the study of the near-surface environment. In the long term, EAR will have to coordinate its programs with ATM (paleoclimate and trace gas fluxes), OCE (geochemical pathways at the ocean-solid-Earth interface, paleoceanography, and sedimentary processes and chemical transformations in the coastal environment), and other NSF divisions. Recommendation: EAR should take the lead within NSF in devising a long-term strategy for funding research on the Critical Zone. The study of Critical Zone processes would also benefit from partnerships between EAR and other federal agencies. NSF’s focus on research initiated by external proposal submission would complement the more directed research on coastal zone processes carried out by NOAA (characterization and assessment of coastal change), the Federal Emergency Management Agency (coastal erosion and flood hazard), and USGS (environmental quality of coastal areas) (see “ Related Federal Research Programs ”). Similarly, soil research sponsored by USDA (soil properties and carbon sequestration), EPA (soil contaminants and pathways), the Department of Defense (DOD) (soil erosion, compaction, and trafficability), DOE (bioremediation and the carbon cycle), NASA (response of terrestrial life to conditions in space), and a host of private foundations is typically directed toward practical questions of agriculture, environmental quality, and land management. The understanding generated from these applied studies, as well as from basic research funded by EAR, will provide a key contribution to many outstanding Earth science problems. MAJOR INITIATIVES Previous EAR initiatives have funded major new tools for Earth observations, as well as new mechanisms for multidisciplinary research ( Appendix A ). One outstanding example is the program in observational seismology run by the Incorporated Research Institutions for Seismology (IRIS), which now comprises 100 members, primarily U.S. universities and research organizations, and manages an annual budget of about $11 million. 8 IRIS provides the instrumentation and infrastructure for gathering and disseminating seismological 8   The IRIS consortium, begun in 1984, has been responsible for the deployment of the Global Seismic Network, a worldwide distribution of 120 permanent, high-performance seismic stations sponsored by NSF in cooperative agreements with USGS, DOD, and the Program for Array Seismic Studies of the Continental Lithosphere.

OCR for page 89
Basic Research Opportunities in Earth Science data to the entire Earth science community. These data are critical to the study of the continents and deep interior, two major areas of scientific opportunity discussed in Chapter 2 . A second example is the Continental Dynamics (CD) Program, begun in 1984 in response to an NRC report 9 and now an EAR core program with an annual budget of about $9 million. The CD program funds multidisciplinary research that focuses on an improved understanding of the processes governing the origin, structure, composition, and dynamical evolution of the continents; it is thus complementary to the facility-oriented IRIS program. 10 In the following section, two major research initiatives are considered: (1) EarthScope, a facility-oriented program for observing the structure and active deformation of the North American continent, and (2) an Earth Science Natural Laboratory program (ESNL), which would support long-term, multidisciplinary observatories of terrestrial processes in specific field areas. Funding for the first stage of EarthScope has been proposed in the President’s 2001 budget request, 11 whereas the ESNL program is still in the conceptual stage. EarthScope EarthScope is an NSF initiative to build a distributed, multipurpose set of instruments and observatories that will substantially enhance the capabilities of Earth scientists to investigate the following research topics: Earthquakes and seismic hazards Magmatic systems and volcanic hazards Active tectonics Fluids in the crust 9   Opportunities for Research in the Geological Sciences, National Academy Press, Washington, D.C., 95 pp., 1983. 10   The CD program is particularly oriented toward projects whose scope and complexity require a cooperative or multi-institutional approach and multiyear planning and execution. The program funds only relatively large projects that do not fit easily within other EAR programs and that have broad support within the Earth science community. The program also funds research as part of the interagency Continental Scientific Drilling and Exploration Program. 11   The request for EarthScope in the President’s FY 2001 budget is $17.4 million in FY 2001, $28.5 million in FY 2002, $15.7 million in FY 2003, and $13.2 million in FY 2004. The total request under the NSF’s Major Research Equipment program is $74.8 million, which covers only the acquisition, construction, and deployment aspects of EarthScope-Phase I (USArray, the San Andreas Fault Observatory at Depth).

OCR for page 89
Basic Research Opportunities in Earth Science typically individual investigator grants. Although such training teaches students important disciplinary skills, it can lack the cross-disciplinary components that allow students to branch into new fields and gain the knowledge needed to pursue a broad range of career opportunities. Better integration of education and research in a multidisciplinary framework is needed to help students take advantage of new research directions and employment options. Grants and fellowships that offer this flexibility, such as those sponsored by NSF’s Integrative Graduate Education and Research Training (IGERT) Program, 29 are key to attracting and retaining the best students. A plausible strategy for encouraging broad-based training is for EAR to establish a program of research training grants, either on its own or with other science divisions, to provide undergraduates and graduate students with access to alternative research environments. 30 Training grants available through other NSF divisions could serve as models for an EAR program. Recommendation. EAR should institute training grants and expand its fellowship program to facilitate broad-based education for undergraduate and graduate students in the Earth sciences. Earth scientists who have just begun their careers (i.e., postdoctoral researchers), as well as those who are already established (i.e., professors), need help in bridging their research to other disciplines. For example, researchers with adequate backgrounds in both biology and the Earth sciences are needed to advance the field of geobiology. Similar training across disciplinary lines is required for study of the atmosphere-hydrosphere-lithosphere-pedosphere interactions that govern the long-term behavior of the Earth’s climate, the problems of comparative planetology, and many of the other science opportunities discussed in this report. Plausible mechanisms for these purposes involve the postdoctoral training of young scientists and sabbatical-leave opportunities for established academic scientists. Recommendation. EAR should establish postdoctoral and sabbatical-leave training programs to facilitate development of the cross-disciplinary expertise needed to exploit research oppor 29   The NSF-wide IGERT program was initiated in 1997 to encourage the development of multidisciplinary curricula in doctoral-level education; see http://www.nsf.gov/igert . 30   As envisaged in the workshop report Geoscience Education, such training programs would prepare students for non-academic jobs by offering internships with industry, museums, nonprofit organizations, or government agencies, or for nontraditional research positions by offering fellowships that span multiple programs, disciplines, or institutions.

OCR for page 89
Basic Research Opportunities in Earth Science tunities in geobiology, climate science, and other interdisciplinary fields. Broadening Involvement in Active Research Many investigators are interested in involving students and teachers in their research, and most are enthusiastic about sharing their results with the broader community. The Research Experience for Undergraduates (REU) Program and the Science and Technology Centers help to involve undergraduates in research projects led by individual investigators and consortia. This approach should be expanded to allow greater involvement of others, such as secondary school students and K-12 teachers. The success of the REU program demonstrates that research by undergraduates can contribute to basic science, particularly in field-based studies. Creative projects benefit participants and carry science to the broader community in ways that conventional outreach programs might not. Field-Focused Opportunities Field work is a fundamental and distinctive aspect of the Earth sciences. It provides the basis for understanding a variety of Earth processes and for validating and calibrating model, laboratory, and remote-sensing results. In addition, field work stimulates students from many backgrounds and helps them develop an appreciation for basic and applied problems in Earth science. Throughout the United States, field sites in many settings—urban, rural, and wilderness—are readily accessible, and many types of field projects can be done at relatively low cost. Thus, field work producing high-quality research data can be sponsored by junior colleges and undergraduate institutions, as well as by research universities. Field work is currently funded under the relevant core research programs through the normal competitive grant process. However, this route is not generally suitable for student-oriented field projects, even for graduate students. In theory, field work for students could be funded through the REU and Research in Undergraduate Institutions programs, although neither explicitly includes a field component. EAR could also seek other mechanisms for supplementing this small-science endeavor. Field programs at other agencies, such as the USGS and USDA summer intern programs or the Educational Component of the National Mapping Program, could serve as alternative models for establishing and funding graduate and undergraduate field programs. The Earth Science Natural Laboratories recommended by the

OCR for page 89
Basic Research Opportunities in Earth Science committee would provide superb settings, as well as an expanded infrastructure for staging field-oriented educational programs for students and teachers. Recommendation. EAR should take advantage of the broad appeal of field work, its modest cost, and its ability to capture the enthusiasm and research effort across a wide range of institutions by providing sufficient funding for graduate and undergraduate field work. Education is intrinsic to all basic research, but there is no one-size-fits-all formula for enhancing the educational component. Uniform educational results should not be expected. By utilizing a variety of approaches, EAR will gain the flexibility it needs to create new educational opportunities within the context of the basic research mission and to take advantage of the rapid changes caused by the information revolution. PARTNERSHIPS IN EARTH SCIENCE The committee has highlighted ways in which EAR might participate in a number of existing interagency programs and initiate new programmatic partnerships to strengthen Earth science and realize the opportunities discussed in this report. Partnerships among federal agencies have become increasingly important mechanisms for organizing and sustaining large scientific efforts on problems of national interest. 31 Such partnerships have a fourfold rationale: (1) to foster the development of multidisciplinary communities needed to address the high-level problems of complex systems; (2) to translate the results of basic research into practical applications; (3) to leverage the limited resources available to individual programs, including equipment and facilities; and (4) to coordinate research across agency programs, thereby promoting synergies and reducing the duplication of effort. These objectives are especially compelling in Earth science, where high-priority national needs require the coordination of basic and applied research over a range of difficult system-level problems. Realizing the benefits of interagency collaborations can be problematic, 31   A prominent example in geoscience is the U.S. Global Change Research Program, which coordinates research on global environmental changes across all federal agencies, interfaces U.S. efforts with the Intergovernmental Panel on Climate Change and other international assessments, and reports annually to the President and Congress on research results and their implications for federal policies; see http://www.usgcrp.gov .

OCR for page 89
Basic Research Opportunities in Earth Science however, owing to structural problems among the participating agencies and scientific communities, as well as practical management issues. 32 Partnerships Within NSF As noted in this chapter and described in Appendix A , programs potentially suitable for funding certain aspects of the research opportunities already exist elsewhere within NSF, particularly in the Biological Sciences Directorate (geobiology and microorganisms in the environment), Ocean Sciences Division (geobiology, shoreline aspects of the Critical Zone, offshore components of EarthScope), Astronomical Science Division (planetary science), Materials Research Division (Earth and planetary materials), and Atmospheric Sciences Division (Critical Zone). In some cases, individual Earth scientists will be able to take advantage of these existing programs, but individual successes in programs external to EAR are not sufficient to mount the strong Earth science efforts envisaged in this report. The committee observes that interdivisional partnerships are most effective when backed by well-defined scientific communities within each of the participating NSF divisions, from which proposals can be solicited and membership drawn for topical workshops and proposal review panels. If enacted, the committee’s recommendations regarding core programs will help to franchise several disciplinary communities within EAR, including geobiology, Earth and planetary materials, soil science, and coastal zone studies. With improved core support, these communities will be better organized to participate in inter-divisional programs. Disciplinary organization within the EAR framework, including the identification of active program managers with responsibilities to specific research communities, is particularly important for effective participation in the NSF-wide crosscutting and interdisciplinary programs. EAR is formally associated with three of these interdirectorate initiatives: ESH, EGB, and LExEn (see Box A.2 ). However, as noted elsewhere in this report, there is great potential for significant participation by Earth scientists in at least three other initiatives: the interagency National Nanotechnology Initiative, Biocomplexity in the Environment, and Information Technology for the Twenty-First Century (IT2). 33 The 32   Some of the generic problems associated with federal support of interdisciplinary research are summarized by N. Metzger and R.N. Zare (Science, v. 283, p. 642-643, 1999). 33   The multiagency IT2 initiative is aimed at pushing the envelope for research and development in information technology, including software, information technology education and work force, human-computer interface, and information management, see http://www.ccic.gov/it2/ .

OCR for page 89
Basic Research Opportunities in Earth Science establishment of core programs in Earth and planetary materials and geobiology will make EAR a more effective federal partner in both the nanotechnology and biocomplexity initiatives, respectively. Although the programmatic mechanisms are perhaps less straightforward, it is clear to the committee that the participation of Earth scientists in federal information technology programs has to be improved. For example, although a series of proposals involving EAR-based scientists has been submitted to the Knowledge and Distributed Intelligence (KDI) program, their success rate in the two competitions was zero. 34 This is peculiar given that the three principal foci of the KDI program—knowledge networking, learning and intelligent systems, and new computational challenges—are clearly applicable to a wide range of Earth science problems. These failures suggest that EAR should be more aggressive in fostering substantial collaborations between Earth scientists and the information technology research community. In some cases, the disciplinary strength and community organization within EAR are already sufficient to engage other NSF divisions, and the need is primarily for NSF managers to provide a structure for interdivisional collaborations. One obvious opportunity is the cooperation between EAR and OCE needed to manage the offshore components of the EarthScope initiative. EarthScope will also provide an expanded basis for interaction between EAR and the MARGINS program. In addition, there are excellent opportunities for strengthening links between EAR and the Division of Civil and Mechanical Systems (CMS) in NSF’s Directorate for Engineering. The CMS division supports “research that will increase geotechnical knowledge for foundations, slopes, excavations, and other geostructures, including soil and rock improvement technologies and reinforcement systems; constitutive modeling and verification in geomechanics; remediation and containment of geoenvironmental contamination; transferability of laboratory results to field scale; and nondestructive and in situ evaluation.” 35 Many of these topics are relevant to the National Earthquake Hazards Reduction Program and the Network for Earthquake Engineering Simulation, which provides a basis for cooperation between EAR, CMS, and other government agencies. 34   For a listing of KDI proposals that have received awards to date, see http://www.ehr.nsf.gov/kdi/default.htm . 35   From the programmatic description at http://www.eng.nsf.gov/CMS/CGS/cgs.htm .

OCR for page 89
Basic Research Opportunities in Earth Science Partnerships between EAR and Other Agencies In Chapter 1 , the case was made that basic research in Earth science is relevant to societal needs in five specific areas of application: (1) discovery, use and conservation of natural resources; (2) characterization and mitigation of natural hazards; (3) geotechnical and materials engineering for commercial and infrastructure development; (4) stewardship of the environment; and (5) terrestrial surveillance for global security and national defense. Although the role of NSF is to fund basic research, it is the mission of other federal agencies to apply this research to national problems. Most federal agencies support a mixture of basic and applied research in areas specifically related to their respective missions, but in many cases the basic research components are not the principal thrust or are narrowly constrained. 36 Even among the few agencies with strong basic research programs, such as the USGS, none rivals EAR in the breadth and depth of the Earth science it sponsors. Therefore, the effective translation of basic research to practical applications requires meaningful collaborations between NSF and mission-oriented agencies, especially when the applications are based on an understanding of the complex natural systems obtained through a broad spectrum of multidisciplinary research. Disciplinary identification and organization under the NSF framework are a prerequisite for effective interagency collaborations. For example, the committee has already pointed out that the absence of a programmatic home for soil science in EAR has made the evaluation and funding of basic soil science difficult, even though this field is quite relevant to research programs in several NSF divisions, as well as to applied research in other federal agencies, particularly the USDA and USGS. The committee’s recommendation for accommodating soil science more formally in a geology core program is aimed in part at franchising soil scientists so that they can more effectively participate in wider initiatives. Indeed, the deep intellectual connections made through fundamental research furnish very effective pathways for broadening communities beyond the narrow specialties of individual researchers and focused research groups. This perspective motivates the committee’s optimism that a rich spectrum of collaborations among geobiologists, geochemists, hydrologists, geomorphologists, and soil scientists on problems of the Critical Zone will lead to practical benefits for society. It also illustrates why EAR should take the lead in forging partnerships in Earth science between NSF and mission-oriented federal agencies. EAR has a long history of partnerships with a number of agencies, primarily USGS, DOE, and NASA, on joint research projects and equipment 36   N. Metzger and R.N. Zare, Science, v. 283, p. 642-643, 1999.

OCR for page 89
Basic Research Opportunities in Earth Science acquisition (see Table A.3 ). Such partnerships have leveraged the science that EAR is able to support, and there are tangible reasons for expanding them in the future. For example, there must be continuing interaction between EAR and USGS on the Advanced National Seismic System (ANSS) and EarthScope, which are closely related and complementary initiatives. 37 It would therefore be effective and beneficial to present the ANSS and EarthScope projects to Congress as a coordinated budget request. An exceptionally promising example of where close interagency collaboration will be fruitful is in the development of InSAR capabilities for measuring active deformation, another major objective of EarthScope. The satellites capable of InSAR imaging will be flown by NASA, but the interpretation of data requires the integration of InSAR data with field studies and other ground-based data collection efforts, activities that should be sponsored through EAR. Indeed, laboratory and field studies supported by EAR are essential for calibrating, validating, and helping to interpret a wide variety of remote-sensing measurements, including gravity, magnetic, and geodetic observations carried out by NASA and other agencies. REQUIRED RESOURCES The committee’s recommendations, taken together, lay out a basis for the way in which EAR can respond to major Earth science challenges and opportunities in the next decade. It should be noted that, in developing its recommendations, the committee did not review the existing EAR program or other federal research programs. Rather, it focused on new research areas that could be added to the EAR portfolio. Consequently, the budget estimates given below will have to be evaluated in a broader context that was not possible in this study. The committee estimates that the new funding needed to implement these recommendations would increase the EAR budget by about two-thirds ( Table 3.1 ). This increase will help to offset the recent decline in federal support of basic Earth science and will substantially strengthen the national effort in this important area of fundamental research. 37   The EarthScope science plan calls for an upgrading of 30 stations of the U.S. National Seismograph Network to the higher-performance standards of the NSF-sponsored GSN, which will benefit USGS in its mission of monitoring earthquakes, while the ANSS deployment plan calls for upgrading regional seismic networks that will assist the EarthScope community in imaging the continental crust and upper mantle at higher resolution.

OCR for page 89
Basic Research Opportunities in Earth Science TABLE 3.1 . Estimated Costs of Proposed Programs Program New Funds (million dollars per year) Core Programs: Geobiology 7 Earth & Planetary Materials 5 Hydrology 5 Instrumentation and Facilities 10 Major Initiatives: EarthScope 10 a Natural Laboratories 20 b Multidisciplinary Research: Microorganisms in the Environment 4 Planetary Science 4 Education 3 Total 68 a Exclusive of EarthScope facilities funded through the MRE program. b Includes $5 million for instrumentation and mobile laboratories. In constructing the budget estimates in Table 3.1 , the committee considered the following points: The average annual expenditures of the disciplinary core programs in EAR is about $11 million, while EAR contributions to special emphasis areas range from $1 million to $11 million ( Appendix A ). Programs with total budgets of less than a few million dollars rarely develop thriving constituencies; the committee thus refrained from recommending new programs below this level. The budget figures in Table 3.1, correspond to the annual costs of programs in current dollars. A substantial new core program in geobiology ($7 million) is needed to take advantage of exceptional scientific opportunities and to furnish an appropriate focus for EAR participation in the NSF-wide programs in biocomplexity and the environment. In addition, the committee recommends significant funding ($4 million) for a special emphasis area in microorganisms in the environment, which would jump-start the expanded EAR effort in geobiology.

OCR for page 89
Basic Research Opportunities in Earth Science The combination of these two initiatives equals the average budget of the established disciplinary core programs—the minimum level plausible for long-term support of geobiology. The allocation of new funds to geobiology would free resources within the G&P core program for expanded research on the Critical Zone. Although the hydrology community is large and well established, the NSF core program in hydrologic sciences is relatively new and expends less than $3 million on investigator-initiated research projects. Correspondingly, the success rate of hydrology proposals (19%) is far below the EAR average (31%). The recommended increment in funding ($5 million) would bring hydrologic sciences in line with other disciplinary core programs and the research opportunities available to this field. The community that does basic research on Earth and planetary materials is also well defined and serves the full breadth of the geosciences, though it is smaller than the major Earth science disciplines. The recommended budget in this area ($5 million) would be sufficient to establish a new core program and to fund EAR participation in the National Nanotechnology Initiative. Substantial funding ($4 million) is allocated to promote interactions between the Earth science and planetary science communities and to exploit research opportunities arising in the comparative study of solar and extrasolar planets, with a focus on the use of Earth science techniques for the analysis of samples returned from extraterrestrial objects and data on planetary surfaces and interiors. EAR is requesting substantial funds from Major Research Equipment (MRE) for the equipment and facility components of the EarthScope initiative. The $10 million in Table 3.1 is for the funding of basic research that uses EarthScope data; it thus excludes the MRE equipment and facility costs. The special emphasis areas in AT and CSEDI, which are currently budgeted at about $1 million each, would be appropriate programs to handle the EarthScope-related increments to the research funding. The largest single item in Table 3.1 is for the ESNL program. The committee envisages a program that would expend an average of about $4 million per year on each natural laboratory, with at least five laboratories active at any given time. For comparison, the average cost of LTER sites is about $2 million. However, ESNLs would typically be more expensive because of the high cost of subsurface sampling and imaging. For example, the projected six-year cost of the SAFOD project, a component of EarthScope (see Box 2.2 ), is $27 million, or $4.5 million per year. A significant fraction of ESNL funding (about one-quarter) would probably be devoted to instrumentation and mobile laboratories and would thus supplement the I&F core program.

OCR for page 89
Basic Research Opportunities in Earth Science The I&F program has grown to comprise one-quarter of the EAR budget, a level of funding the committee deems necessary to maintain and improve facilities critical for basic research. The recommended level of funding ($10 million), combined with the I&F components of natural laboratories ($5 million), would retain the current balance between the research programs and I&F. EAR currently spends about $3 million on education, or about 3% of its annual budget. Given the opportunities for enhancing research-based education and its importance for the future of Earth science, a rough doubling of this budget is plausible. For example, the Geosciences Directorate’s contribution to the IGERT program alone was $10 million in FY 1999. The committee takes no position on how these funds would be allocated between EAR-Education and Human Resources and other core programs.

OCR for page 89
Basic Research Opportunities in Earth Science This page in the original is blank.