Page 13

the fusion energy science program and have acted to reduce the number of knowledgeable scientists from other fields who can contribute to fusion research.

Funding for “general plasma science” is a small fraction of the total of the fusion energy science budget, as shown in Appendix B. Some of these funds appear to have been well used; for example, the National Science Foundation (NSF) and DOE have continued to collaborate on a highly successful but small program to encourage small-scale plasma science experiments. In addition, general plasma science has found support from the National Aeronautics and Space Administration (NASA) and NSF because of its important applications to solar and space science, astrophysics, and geophysics. Industry supports major efforts in the plasma processing of semiconductor chips. Although many of the problems studied in general plasma science do not strictly pertain to the very-high-temperature fusion regime, collaboration with general plasma scientists is one of the main ways in which fusion scientists can interact with the broader scientific community. A firmer institutional commitment to general plasma science on the part of fusion energy science would build stronger links to a vibrant research community that is stimulated by a diversity of research goals.

The proportion of U.S. fusion funding devoted to competitively peer-reviewed grants is relatively small. The peer-review process is a natural way to involve a broader scientific community in the research decisions of a given field; properly administered, it can stimulate a field to evolve a healthy diversity of participants and research approaches.

The committee is concerned that U.S. fusion energy science may have a progressively narrowing demographic base. The replenishment of the fusion community in the future depends on the health of its university programs today. It is very difficult to count fusion and plasma faculty so as to estimate how many students are being trained. There is some information on physics, the discipline that gave birth to plasma and fusion research. Of a total physics faculty of roughly 1300 in 25 leading university research departments, only 3 are assistant professors in plasma physics. This small number suggests that plasma faculty in physics departments are not all being replaced. In addition, the small proportion (roughly 40 percent) of physics departments in leading research universities that have programs in plasma physics is itself a matter of intellectual concern, given plasma's status as the fourth state of matter.

The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement