National Academies Press: OpenBook
Suggested Citation:"Front Matter." John Derbyshire. 2003. Prime Obsession: Bernhard Riemann and the Greatest Unsolved Problem in Mathematics. Washington, DC: Joseph Henry Press. doi: 10.17226/10532.
×

PRIME OBSESSION

Suggested Citation:"Front Matter." John Derbyshire. 2003. Prime Obsession: Bernhard Riemann and the Greatest Unsolved Problem in Mathematics. Washington, DC: Joseph Henry Press. doi: 10.17226/10532.
×
This page in the original is blank.
Suggested Citation:"Front Matter." John Derbyshire. 2003. Prime Obsession: Bernhard Riemann and the Greatest Unsolved Problem in Mathematics. Washington, DC: Joseph Henry Press. doi: 10.17226/10532.
×

PRIME OBSESSION

Bernhard Riemann and the Greatest Unsolved Problem in Mathematics

John Derbyshire

Joseph Henry Press
Washington, D.C.

Suggested Citation:"Front Matter." John Derbyshire. 2003. Prime Obsession: Bernhard Riemann and the Greatest Unsolved Problem in Mathematics. Washington, DC: Joseph Henry Press. doi: 10.17226/10532.
×

Joseph Henry Press
500 Fifth Street, NW Washington, DC 20001

The Joseph Henry Press, an imprint of the National Academies Press, was created with the goal of making books on science, technology, and health more widely available to professionals and the public. Joseph Henry was one of the early founders of the National Academy of Sciences and a leader in early American science.

Any opinions, findings, conclusions, or recommendations expressed in this volume are those of the author and do not necessarily reflect the views of the National Academy of Sciences or its affiliated institutions.

Library of Congress Cataloging-in-Publication Data

Derbyshire, John.

Prime obsession : Bernhard Riemann and the greatest unsolved problem in mathematics / John Derbyshire.

p. cm.

Includes index.

ISBN 0-309-08549-7

1. Numbers, Prime. 2. Series. 3. Riemann, Bernhard, 1826-1866. I. Title.

QA246.D47 2003

512'.72—dc21

2002156310

Copyright 2003 by John Derbyshire. All rights reserved.

Printed in the United States of America.

Suggested Citation:"Front Matter." John Derbyshire. 2003. Prime Obsession: Bernhard Riemann and the Greatest Unsolved Problem in Mathematics. Washington, DC: Joseph Henry Press. doi: 10.17226/10532.
×

For Rosie

Suggested Citation:"Front Matter." John Derbyshire. 2003. Prime Obsession: Bernhard Riemann and the Greatest Unsolved Problem in Mathematics. Washington, DC: Joseph Henry Press. doi: 10.17226/10532.
×
This page in the original is blank.
Suggested Citation:"Front Matter." John Derbyshire. 2003. Prime Obsession: Bernhard Riemann and the Greatest Unsolved Problem in Mathematics. Washington, DC: Joseph Henry Press. doi: 10.17226/10532.
×
Suggested Citation:"Front Matter." John Derbyshire. 2003. Prime Obsession: Bernhard Riemann and the Greatest Unsolved Problem in Mathematics. Washington, DC: Joseph Henry Press. doi: 10.17226/10532.
×

PROLOGUE

In August 1859, Bernhard Riemann was made a corresponding member of the Berlin Academy, a great honor for a young mathematician (he was 32). As was customary on such occasions, Riemann presented a paper to the Academy giving an account of some research he was engaged in. The title of the paper was: “On the Number of Prime Numbers Less Than a Given Quantity.” In it, Riemann investigated a straightforward issue in ordinary arithmetic. To understand the issue, ask: How many prime numbers are there less than 20? The answer is eight: 2, 3, 5, 7, 11, 13, 17, and 19. How many are there less than one thousand? Less than one million? Less than one billion? Is there a general rule or formula for how many that will spare us the trouble of counting them?

Riemann tackled the problem with the most sophisticated mathematics of his time, using tools that even today are taught only in advanced college courses, and inventing for his purposes a mathematical object of great power and subtlety. One-third of the way into the paper, he made a guess about that object, and then remarked:

Suggested Citation:"Front Matter." John Derbyshire. 2003. Prime Obsession: Bernhard Riemann and the Greatest Unsolved Problem in Mathematics. Washington, DC: Joseph Henry Press. doi: 10.17226/10532.
×

One would, of course, like to have a rigorous proof of this, but I have put aside the search for such a proof after some fleeting vain attempts because it is not necessary for the immediate objective of my investigation.

That casual, incidental guess lay almost unnoticed for decades. Then, for reasons I have set out to explain in this book, it gradually seized the imaginations of mathematicians, until it attained the status of an overwhelming obsession.

The Riemann Hypothesis, as that guess came to be called, remained an obsession all through the twentieth century and remains one today, having resisted every attempt at proof or disproof. Indeed, the obsession is now stronger than ever since other great old open problems have been resolved in recent years: the Four-Color Theorem (originated 1852, proved in 1976), Fermat’s Last Theorem (originated probably in 1637, proved in 1994), and many others less well known outside the world of professional mathematics. The Riemann Hypothesis is now the great white whale of mathematical research.

The entire twentieth century was bracketed by mathematicians’ preoccupation with the Riemann Hypothesis. Here is David Hilbert, one of the foremost mathematical intellects of his time, addressing the Second International Congress of Mathematicians at Paris in August 1900:

Essential progress in the theory of the distribution of prime numbers has lately been made by Hadamard, de la Vallée Poussin, von Mangoldt and others. For the complete solution, however, of the problems set us by Riemann’s paper “On the Number of Prime Numbers Less Than a Given Quantity,” it still remains to prove the correctness of an exceedingly important statement of Riemann, viz....

There follows a statement of the Riemann Hypothesis. A hundred years later, here is Phillip A. Griffiths, Director of the Institute for Advanced Study in Princeton, and formerly Professor of Math-

Suggested Citation:"Front Matter." John Derbyshire. 2003. Prime Obsession: Bernhard Riemann and the Greatest Unsolved Problem in Mathematics. Washington, DC: Joseph Henry Press. doi: 10.17226/10532.
×

ematics at Harvard University. He is writing in the January 2000 issue of American Mathematical Monthly, under the heading: “Research Challenges for the 21st Century”:

Despite the tremendous achievements of the 20th century, dozens of outstanding problems still await solution. Most of us would probably agree that the following three problems are among the most challenging and interesting.

The Riemann Hypothesis. The first is the Riemann Hypothesis, which has tantalized mathematicians for 150 years....

An interesting development in the United States during the last years of the twentieth century was the rise of private institutes for mathematical research, funded by wealthy math enthusiasts. Both the Clay Mathematics Institute (founded by Boston financier Landon T. Clay in 1998) and the American Institute of Mathematics (established in 1994 by California entrepreneur John Fry) have targeted the Riemann Hypothesis. The Clay Institute has offered a prize of one million dollars for a proof or a disproof; the American Institute of Mathematics has addressed the Hypothesis with three full-scale conferences (1996, 1998, and 2002), attended by researchers from all over the world. Whether these new approaches and incentives will crack the Riemann Hypothesis at last remains to be seen.

Unlike the Four-Color Theorem, or Fermat’s Last Theorem, the Riemann Hypothesis is not easy to state in terms a nonmathematician can easily grasp. It lies deep in the heart of some quite abstruse mathematical theory. Here it is:

The Riemann Hypothesis

All non-trivial zeros of the zeta function have real part one-half.

To an ordinary reader, even a well-educated one, who has had no advanced mathematical training, this is probably quite incomprehen-

Suggested Citation:"Front Matter." John Derbyshire. 2003. Prime Obsession: Bernhard Riemann and the Greatest Unsolved Problem in Mathematics. Washington, DC: Joseph Henry Press. doi: 10.17226/10532.
×

sible. It might as well be written in Old Church Slavonic. In this book, as well as describing the history of the Hypothesis, and some of the personalities who have been involved with it, I have attempted to bring this deep and mysterious result within the understanding of a general readership, giving just as much mathematics as is needed to understand it.

* * * * *

The plan of the book is very simple. The odd-numbered chapters (I was going to make it the prime-numbered, but there is such a thing as being too cute) contain mathematical exposition, leading the reader, gently I hope, to an understanding of the Riemann Hypothesis and its importance. The even-numbered chapters offer historical and biographical background matter.

I originally intended these two threads to be independent, so that readers who don’t like equations and formulae could read only the even-numbered chapters while readers who did not care for history or anecdote could just read the odd-numbered ones. I did not quite manage to hold to this plan all the way through, and I now doubt that it can be done with a subject so intricate. Still, the basic pattern was not altogether lost. There is much more math in the odd-numbered chapters, and much less in the even-numbered ones, and you are, of course, free to try reading just the one group or the other. I hope, though, that you will read the whole book.

I have aimed this book at the intelligent and curious but nonmathematical reader. That statement, of course, raises a number of questions. What do I mean by “nonmathematical?” How much math knowledge have I assumed my readers possess? Well, everybody knows some math. Probably most educated people have at least an inkling of what calculus is all about. I think I have pitched my book to the level of a person who finished high school math satisfactorily and perhaps went on to a couple of college courses. My original goal was, in fact, to explain the Riemann Hypothesis without using any calculus

Page xiii Cite
Suggested Citation:"Front Matter." John Derbyshire. 2003. Prime Obsession: Bernhard Riemann and the Greatest Unsolved Problem in Mathematics. Washington, DC: Joseph Henry Press. doi: 10.17226/10532.
×

at all. This proved to be a tad over-optimistic, and there is a very small quantity of very elementary calculus in just three chapters, explained as it goes along.

Pretty much everything else is just arithmetic and basic algebra: multiplying out parentheses like (a + b) × (c + d), or rearranging equations so that S = 1 + xS becomes S = 1/(1–x). You will also need a willingness to take in the odd shorthand symbols mathematicians use to spare the muscles of their writing hands. I claim at least this much: I don’t believe the Riemann Hypothesis can be explained using math more elementary than I have used here, so if you don’t understand the Hypothesis after finishing my book, you can be pretty sure you will never understand it.

* * * * *

Various professional mathematicians and historians of mathematics were generous with their help when I approached them. I am profoundly grateful to the following for their time, freely given, for their advice, sometimes not taken, for their patience in dealing with my repetitive dumb questions, and in one case for the hospitality of his home: Jerry Alexanderson, Tom Apostol, Matt Brin, Brian Conrey, Harold Edwards, Dennis Hejhal, Arthur Jaffe, Patricio Lebeuf, Stephen Miller, Hugh Montgomery, Erwin Neuenschwander, Andrew Odlyzko, Samuel Patterson, Peter Sarnak, Manfred Schröder, Ulrike Vorhauer, Matti Vuorinen, and Mike Westmoreland. Any gross errors in this book’s math are mine, not theirs. Brigitte Brüggemann and Herbert Eiteneier helped plug the gaps in my German. Commissions from my friends at National Review, The New Criterion, and The Washington Times allowed me to feed my children while working on this book. Numerous readers of my online opinion columns helped me understand what mathematical ideas give the most difficulty to nonmathematicians.

Along with these acknowledgments goes an approximately equal number of apologies. The topic this book deals with has been under

Suggested Citation:"Front Matter." John Derbyshire. 2003. Prime Obsession: Bernhard Riemann and the Greatest Unsolved Problem in Mathematics. Washington, DC: Joseph Henry Press. doi: 10.17226/10532.
×

intensive investigation by some of the best minds on our planet for a hundred years. In the space available to me, and by the methods of exposition I have decided on, it has proved necessary to omit entire large regions of inquiry relevant to the Riemann Hypothesis. You will find not one word here about the Density Hypothesis, the approximate functional equation, or the whole fascinating issue—just recently come to life after long dormancy—of the moments of the zeta function. Nor is there any mention of the Generalized Riemann Hypothesis, the Modified Generalized Riemann Hypothesis, the Extended Riemann Hypothesis, the Grand Riemann Hypothesis, the Modified Grand Riemann Hypothesis, or the Quasi-Riemann Hypothesis.

Even more distressing, there are many workers who have toiled away valiantly in these vineyards for decades, but whose names are absent from my text: Enrico Bombieri, Amit Ghosh, Steve Gonek, Henryk Iwaniec (half of whose mail comes to him addressed as “Henry K. Iwaniec”), Nina Snaith, and many others. My sincere apologies. I did not realize, when starting out, what a vast subject I was taking on. This book could easily have been three times, or thirty times, longer, but my editor was already reaching for his chainsaw.

And one more acknowledgment. I hold the superstitious belief that any book above the level of hired drudge work—any book written with care and affection—has a presiding spirit. By that, I only mean to say that a book is about some one particular human being, who is in the author’s mind while he works, and whose personality colors the book. (In the case of fiction, I am afraid that all too often that human being is the author himself.)

The presiding spirit of this book, who seemed often to be glancing over my shoulder as I wrote, whom I sometimes imagined I heard clearing his throat shyly in an adjoining room, or moving around discreetly behind the scenes in both my mathematical and historical chapters, has been Bernhard Riemann. Reading him, and reading about him, I developed an odd mixture of feelings for the man: great sympathy for his social awkwardness, wretched health, repeated be-

Suggested Citation:"Front Matter." John Derbyshire. 2003. Prime Obsession: Bernhard Riemann and the Greatest Unsolved Problem in Mathematics. Washington, DC: Joseph Henry Press. doi: 10.17226/10532.
×

reavements, and chronic poverty, mixed with awe at the extraordinary powers of his mind and heart.

A book should be dedicated to someone living, so that the dedication can give pleasure. I have dedicated this book to my wife, who knows very well how sincere that dedication is. There is a sense, though, not to be left unremarked in a prologue, in which this book most properly belongs to Bernhard Riemann, who, in a short life blighted with much misfortune, gave to his fellow men so very, very much of everlasting value—including a problem that continues to vex them a century and a half after, in a characteristically diffident aside, he noted his own “fleeting vain attempts” to resolve it.

John Derbyshire

Huntington, New York

June 2002

Suggested Citation:"Front Matter." John Derbyshire. 2003. Prime Obsession: Bernhard Riemann and the Greatest Unsolved Problem in Mathematics. Washington, DC: Joseph Henry Press. doi: 10.17226/10532.
×
This page in the original is blank.
Suggested Citation:"Front Matter." John Derbyshire. 2003. Prime Obsession: Bernhard Riemann and the Greatest Unsolved Problem in Mathematics. Washington, DC: Joseph Henry Press. doi: 10.17226/10532.
×
Page R1
Suggested Citation:"Front Matter." John Derbyshire. 2003. Prime Obsession: Bernhard Riemann and the Greatest Unsolved Problem in Mathematics. Washington, DC: Joseph Henry Press. doi: 10.17226/10532.
×
Page R2
Suggested Citation:"Front Matter." John Derbyshire. 2003. Prime Obsession: Bernhard Riemann and the Greatest Unsolved Problem in Mathematics. Washington, DC: Joseph Henry Press. doi: 10.17226/10532.
×
Page R3
Suggested Citation:"Front Matter." John Derbyshire. 2003. Prime Obsession: Bernhard Riemann and the Greatest Unsolved Problem in Mathematics. Washington, DC: Joseph Henry Press. doi: 10.17226/10532.
×
Page R4
Suggested Citation:"Front Matter." John Derbyshire. 2003. Prime Obsession: Bernhard Riemann and the Greatest Unsolved Problem in Mathematics. Washington, DC: Joseph Henry Press. doi: 10.17226/10532.
×
Page R5
Suggested Citation:"Front Matter." John Derbyshire. 2003. Prime Obsession: Bernhard Riemann and the Greatest Unsolved Problem in Mathematics. Washington, DC: Joseph Henry Press. doi: 10.17226/10532.
×
Page R6
Suggested Citation:"Front Matter." John Derbyshire. 2003. Prime Obsession: Bernhard Riemann and the Greatest Unsolved Problem in Mathematics. Washington, DC: Joseph Henry Press. doi: 10.17226/10532.
×
Page R7
Page viii Cite
Suggested Citation:"Front Matter." John Derbyshire. 2003. Prime Obsession: Bernhard Riemann and the Greatest Unsolved Problem in Mathematics. Washington, DC: Joseph Henry Press. doi: 10.17226/10532.
×
Page R8
Suggested Citation:"Front Matter." John Derbyshire. 2003. Prime Obsession: Bernhard Riemann and the Greatest Unsolved Problem in Mathematics. Washington, DC: Joseph Henry Press. doi: 10.17226/10532.
×
Page R9
Suggested Citation:"Front Matter." John Derbyshire. 2003. Prime Obsession: Bernhard Riemann and the Greatest Unsolved Problem in Mathematics. Washington, DC: Joseph Henry Press. doi: 10.17226/10532.
×
Page R10
Suggested Citation:"Front Matter." John Derbyshire. 2003. Prime Obsession: Bernhard Riemann and the Greatest Unsolved Problem in Mathematics. Washington, DC: Joseph Henry Press. doi: 10.17226/10532.
×
Page R11
Suggested Citation:"Front Matter." John Derbyshire. 2003. Prime Obsession: Bernhard Riemann and the Greatest Unsolved Problem in Mathematics. Washington, DC: Joseph Henry Press. doi: 10.17226/10532.
×
Page R12
Page xiii Cite
Suggested Citation:"Front Matter." John Derbyshire. 2003. Prime Obsession: Bernhard Riemann and the Greatest Unsolved Problem in Mathematics. Washington, DC: Joseph Henry Press. doi: 10.17226/10532.
×
Page R13
Suggested Citation:"Front Matter." John Derbyshire. 2003. Prime Obsession: Bernhard Riemann and the Greatest Unsolved Problem in Mathematics. Washington, DC: Joseph Henry Press. doi: 10.17226/10532.
×
Page R14
Suggested Citation:"Front Matter." John Derbyshire. 2003. Prime Obsession: Bernhard Riemann and the Greatest Unsolved Problem in Mathematics. Washington, DC: Joseph Henry Press. doi: 10.17226/10532.
×
Page R15
Suggested Citation:"Front Matter." John Derbyshire. 2003. Prime Obsession: Bernhard Riemann and the Greatest Unsolved Problem in Mathematics. Washington, DC: Joseph Henry Press. doi: 10.17226/10532.
×
Page R16
Next: Part I: The Prime Number Theorem »
Prime Obsession: Bernhard Riemann and the Greatest Unsolved Problem in Mathematics Get This Book
×
 Prime Obsession: Bernhard Riemann and the Greatest Unsolved Problem in Mathematics
Buy Pdf book | $21.50 Buy Ebook | $17.99
MyNAP members save 10% online.
Login or Register to save!

In August 1859 Bernhard Riemann, a little-known 32-year old mathematician, presented a paper to the Berlin Academy titled: "On the Number of Prime Numbers Less Than a Given Quantity." In the middle of that paper, Riemann made an incidental remark — a guess, a hypothesis. What he tossed out to the assembled mathematicians that day has proven to be almost cruelly compelling to countless scholars in the ensuing years. Today, after 150 years of careful research and exhaustive study, the question remains. Is the hypothesis true or false?

Riemann's basic inquiry, the primary topic of his paper, concerned a straightforward but nevertheless important matter of arithmetic — defining a precise formula to track and identify the occurrence of prime numbers. But it is that incidental remark — the Riemann Hypothesis — that is the truly astonishing legacy of his 1859 paper. Because Riemann was able to see beyond the pattern of the primes to discern traces of something mysterious and mathematically elegant shrouded in the shadows — subtle variations in the distribution of those prime numbers. Brilliant for its clarity, astounding for its potential consequences, the Hypothesis took on enormous importance in mathematics. Indeed, the successful solution to this puzzle would herald a revolution in prime number theory. Proving or disproving it became the greatest challenge of the age.

It has become clear that the Riemann Hypothesis, whose resolution seems to hang tantalizingly just beyond our grasp, holds the key to a variety of scientific and mathematical investigations. The making and breaking of modern codes, which depend on the properties of the prime numbers, have roots in the Hypothesis. In a series of extraordinary developments during the 1970s, it emerged that even the physics of the atomic nucleus is connected in ways not yet fully understood to this strange conundrum. Hunting down the solution to the Riemann Hypothesis has become an obsession for many — the veritable "great white whale" of mathematical research. Yet despite determined efforts by generations of mathematicians, the Riemann Hypothesis defies resolution.

Alternating passages of extraordinarily lucid mathematical exposition with chapters of elegantly composed biography and history, Prime Obsession is a fascinating and fluent account of an epic mathematical mystery that continues to challenge and excite the world. Posited a century and a half ago, the Riemann Hypothesis is an intellectual feast for the cognoscenti and the curious alike. Not just a story of numbers and calculations, Prime Obsession is the engrossing tale of a relentless hunt for an elusive proof — and those who have been consumed by it.

READ FREE ONLINE

  1. ×

    Welcome to OpenBook!

    You're looking at OpenBook, NAP.edu's online reading room since 1999. Based on feedback from you, our users, we've made some improvements that make it easier than ever to read thousands of publications on our website.

    Do you want to take a quick tour of the OpenBook's features?

    No Thanks Take a Tour »
  2. ×

    Show this book's table of contents, where you can jump to any chapter by name.

    « Back Next »
  3. ×

    ...or use these buttons to go back to the previous chapter or skip to the next one.

    « Back Next »
  4. ×

    Jump up to the previous page or down to the next one. Also, you can type in a page number and press Enter to go directly to that page in the book.

    « Back Next »
  5. ×

    Switch between the Original Pages, where you can read the report as it appeared in print, and Text Pages for the web version, where you can highlight and search the text.

    « Back Next »
  6. ×

    To search the entire text of this book, type in your search term here and press Enter.

    « Back Next »
  7. ×

    Share a link to this book page on your preferred social network or via email.

    « Back Next »
  8. ×

    View our suggested citation for this chapter.

    « Back Next »
  9. ×

    Ready to take your reading offline? Click here to buy this book in print or download it as a free PDF, if available.

    « Back Next »
Stay Connected!