National Academies Press: OpenBook

Improving Risk Communication (1989)

Chapter: 3 Conflict About Hazards and Risks

« Previous: 2 Understanding Hazards and Risks
Suggested Citation:"3 Conflict About Hazards and Risks." National Research Council. 1989. Improving Risk Communication. Washington, DC: The National Academies Press. doi: 10.17226/1189.
×
Page 54
Suggested Citation:"3 Conflict About Hazards and Risks." National Research Council. 1989. Improving Risk Communication. Washington, DC: The National Academies Press. doi: 10.17226/1189.
×
Page 55
Suggested Citation:"3 Conflict About Hazards and Risks." National Research Council. 1989. Improving Risk Communication. Washington, DC: The National Academies Press. doi: 10.17226/1189.
×
Page 56
Suggested Citation:"3 Conflict About Hazards and Risks." National Research Council. 1989. Improving Risk Communication. Washington, DC: The National Academies Press. doi: 10.17226/1189.
×
Page 57
Suggested Citation:"3 Conflict About Hazards and Risks." National Research Council. 1989. Improving Risk Communication. Washington, DC: The National Academies Press. doi: 10.17226/1189.
×
Page 58
Suggested Citation:"3 Conflict About Hazards and Risks." National Research Council. 1989. Improving Risk Communication. Washington, DC: The National Academies Press. doi: 10.17226/1189.
×
Page 59
Suggested Citation:"3 Conflict About Hazards and Risks." National Research Council. 1989. Improving Risk Communication. Washington, DC: The National Academies Press. doi: 10.17226/1189.
×
Page 60
Suggested Citation:"3 Conflict About Hazards and Risks." National Research Council. 1989. Improving Risk Communication. Washington, DC: The National Academies Press. doi: 10.17226/1189.
×
Page 61
Suggested Citation:"3 Conflict About Hazards and Risks." National Research Council. 1989. Improving Risk Communication. Washington, DC: The National Academies Press. doi: 10.17226/1189.
×
Page 62
Suggested Citation:"3 Conflict About Hazards and Risks." National Research Council. 1989. Improving Risk Communication. Washington, DC: The National Academies Press. doi: 10.17226/1189.
×
Page 63
Suggested Citation:"3 Conflict About Hazards and Risks." National Research Council. 1989. Improving Risk Communication. Washington, DC: The National Academies Press. doi: 10.17226/1189.
×
Page 64
Suggested Citation:"3 Conflict About Hazards and Risks." National Research Council. 1989. Improving Risk Communication. Washington, DC: The National Academies Press. doi: 10.17226/1189.
×
Page 65
Suggested Citation:"3 Conflict About Hazards and Risks." National Research Council. 1989. Improving Risk Communication. Washington, DC: The National Academies Press. doi: 10.17226/1189.
×
Page 66
Suggested Citation:"3 Conflict About Hazards and Risks." National Research Council. 1989. Improving Risk Communication. Washington, DC: The National Academies Press. doi: 10.17226/1189.
×
Page 67
Suggested Citation:"3 Conflict About Hazards and Risks." National Research Council. 1989. Improving Risk Communication. Washington, DC: The National Academies Press. doi: 10.17226/1189.
×
Page 68
Suggested Citation:"3 Conflict About Hazards and Risks." National Research Council. 1989. Improving Risk Communication. Washington, DC: The National Academies Press. doi: 10.17226/1189.
×
Page 69
Suggested Citation:"3 Conflict About Hazards and Risks." National Research Council. 1989. Improving Risk Communication. Washington, DC: The National Academies Press. doi: 10.17226/1189.
×
Page 70
Suggested Citation:"3 Conflict About Hazards and Risks." National Research Council. 1989. Improving Risk Communication. Washington, DC: The National Academies Press. doi: 10.17226/1189.
×
Page 71

Below is the uncorrected machine-read text of this chapter, intended to provide our own search engines and external engines with highly rich, chapter-representative searchable text of each book. Because it is UNCORRECTED material, please consider the following text as a useful but insufficient proxy for the authoritative book pages.

3 Conflict About Hazards and Risks Conflict within our society about technological choices, focusing on hazards and risks, is an essential part of the environment in which those choices are debated and made (e.g., Dickson, 1984; Lawless, 1977; Mazur, 1981; Nelkin, 1979a).i That is, conflict is an essen- tial part of the environment of risk communication. This chapter discusses the reasons communication about hazards and risks in the U.S. political system has become so contentious over the last two decades. It identifies the major sources of this increasing conflict and briefly explores the nature of that conflict. Risk communication is profoundly affected by the conflictual atmosphere in which it occurs. IS RISE INCREASING OR DECREASING? For many observers the central dispute about technology and risk concerns whether risk is increasing or decreasing (e.g., National Research Council, 1982~. In some accounts people are concerned about the risks of technology because there is an increasing threat of technological disaster; in other accounts, public concern flies in the face of a demonstrable decrease in net risk to human health and survival. Although we do not believe this debate to be productive for risk communication, a brief and simplified account of it will serve to introduce the discussion that follows, concerning the sources of increasing conflict about technological choices. 54

CONFLICT ABOUT HAZARDS AND RISKS TABLE 3.1 Life Expectancies in the United States, 1900-1984 White Male Black Malea White Female Black Femalea Life Expectancy at Birth 1900-1902 48.2 32.5 51.1 35.0 1949-1951 66.3 58.9 72.0 62.7 1984 71.8 65.6 78.7 73.7 Remaining Life Expectancy at Age 25 1900-1902 38.5 32.2 40.1 33.9 1949-1951 44.9 39.5 49.8 42.4 1984 48.7 43.1 55.0 50.7 aLife expectancy figures for 1949-1951 are for nonwhites. SOURCE: Metropolitan Life Insurance Company Statistical Bulletin, 1987. It Is the Safest of Times 55 Proponents of the view that this is the safest of times2 point out that the best overall measure of health and safety risk is average life expectancy. They note that during this century there have been dra- matic increases in life expectancy even as the society has increased its use of the chemicals and other hazardous substances that are the subject of intense debate about risk. The increases have been marked for women and men and for blacks and whites (see Table 3.1~. While much of the increased longevity is due to declining infant mortality and is probably unrelated to environmental and occupational health hazards, improvements in life expectancy of young adults have also been striking. Thus medical science, improved nutrition, water pu- rification, and other advances have combined to give each person a good chance at living a full life span. The data offer no indication that epidemics of chemical-induced cancer or other technologically borne scourges are increasing the risk of fatality. Proponents of the view that risk is decreasing point out that many of the hazardous substances now in the environment decrease overall risk by replacing more dangerous substances. For instance, chlorinated hydrocarbon solvents, which cause cancer in animals and possibly humans as well, have replaced flammable ones, which caused death by fire. Many other hazardous substances decrease risk by reducing more serious preexisting hazards. Pesticides and herbicides

56 IMPROVING RISK COMMUNICATION may cause cancer, but, in some parts of the world at least, they have helped prevent famine. Water chlorination increases exposure to carcinogens but decreases exposure to typhoid-causing bacteria and other infectious agents. Proponents of the view that technology improves safety conclude that many people are becoming more and more concerned about smaller and smaller risks. They see the gains from past technological change as outweighing the new risks by a large margin, and they see no reason the trend will not continue. It Is the Riskiest of Times Proponents of the view that this is the riskiest of times see mod- ern technology as generating new threats to society and the earth's life-support systems and as doing so at an accelerating pace. They argue that because of the technological advances that have increased life spans, population growth threatens more devastating famines than the world has ever seen. They also note that the Tong-term bio- Togical and ecological effects of rapid increases in the use of chemicals are still unknown. To illustrate the reason for concern, they note that serious hazards continue to be discovered a recent example is the hazard to the earth's ozone layer from manufactured chIorofluoro- carbons. They point out that the synergistic effects of technological hazards remain almost entirely unstudied even though people are rarely exposed to one hazard in isolation from others. They point to a range of global environmental threats whose ultimate implications for humanity are unknown but potentially catastrophic: the rapid rate of extinction of species and the destruction of their habitats; deforestation and decreases in biological diversity in the tropics; the possibility of major climatic change due to human activity; and, of course, the possibility of nuclear holocaust. Proponents of the view that technology is increasing risks do not see advances in life expectancy as a convincing counterargument. They point out that many of the new risks are unlikely to be reflected in current life expectancy data because they are so far only evident in indicators of ecosystems and the geosphere. They note that the new low-probability catastrophic risks that they consider important cannot appear in life expectancy tables because the catastrophes have not yet occurred. And they suggest that progress in raising life expectancy, which has slowed since 1950, might have been greater if it had not been for the new risks. Thus those who see risk as

CONFLICT ABO UT HAZARDS AND RISKS 57 increasing call for tighter control over technology, introduction of more environmentally benign technology, and abandonment of some technologies considered particularly risky. Understanding the Conflict Although each of these views has some valid and convincing evidence on its side, the dispute cannot be resolved by available evidence. In fact, it may not ultimately be about evidence. At a deeper level it is about what kinds of risks people want most to avoid, what kinds of lives they want to lead, what they believe the future will bring, and what the proper relationship is between humanity and nature. Reviewing the evidence will not resolve the dispute- in fact, debates over technology framed in this way seem only to increase anger and frustration. But understanding the conflict may be a necessary first step toward improving dialogue, that is, toward making better risk communication possible. To understand the conflict, it helps to begin by asking what has changed in the relation of technology and society and what has not. As we noted in Chapter 2, the existence of technological hazards is nothing new. Whether such hazards present an increased net risk is, of course, a matter of dispute. There is little doubt, however, that the extent and intensity of conflict about technological hazards have increased substantially over the past 30 years. O~ ;_ 11-A ~libel ___1 at- __ ~n ~ This can be al cue pressures gnat culminated in a Furry ot environmental legislation in the late 1960s and the 1970s, in evidence of increasing public opposition to nuclear power since the early 1970s (Ahearne, 1987; Freudenburg and Rosa, 1984; Hively, 1988), and in the con- tinuing strong public support for environmental regulation during tne Reagan years in the face of the administration's commitment to deregulation (Dunlap, 1987~.3 The following sections elaborate on the major factors contributing to intense conflict over technology and on the nature of that conflict. . ~ ~ CHANGES IN THE NATURE OF HAZARDS AND IN KNOWLEDGE ABOUT THEM The hazards recognized in modern living have changed in kind, regardless of whether any particular type of risk has increased or decreased. In addition, new knowledge about hazards and risks has led people to think about them in new ways. The important changes

58 IMPROVING RISK COMMUNICATION described below give reason for a continuing high level of public concern (Dunlap, 1987; Mitchell, 1980). Increased Understanding of Hnmnn Influence on Hazards Advances in science and technology have made clear that hu- manity has much more to do with its own health and longevity than was once believed. Many illnesses and deaths that were once seen as inevitable, random, or divinely caused are now known to have human origins. Modern science can detect anthropogenic toxic substances at increasingly low concentrations and can trace their bi- ological effects with animal experiments and epidemiological studies. Modern techniques of detection and analysis can connect events over great distances and through complex pathways, revealing the human causes of hazards. People are also increasingly aware that human action can avoid or reduce risks. Individuals have learned that they can increase their life expectancies by wearing seat belts, avoiding tobacco use, and controlling their diets. Governments and firms can reduce human health risks with pollution controls and improved safety measures in industrial processes and consumer products. And, of course, medical science continues to develop ways to prolong life. It is an irony of progress that each success in prolonging and enhancing human life brings increasing awareness that human action or inaction can also be responsible for death. Awareness of the human influence over life and death makes tech- nological choices into moral issues. In most modern societies harm to a person readily becomes a moral issue if a responsible party can be identified. Thus people fee] morally obligated to donate blood or bone marrow when they are made to understand that their particu- lar type is needed to prolong life (Schwartz, 1977~. Similarly, people who believe industrial firms are responsible for some cancers tend to see them as morally obligated to ameliorate the harm (Stern et al., 1986~. From such moral feelings comes the widespread sentiment for using extraordinary, risky, and expensive measures to prolong lives when nothing else is likely to work. By the same reasoning, reports that the burning of coal in Ohio is killing fish in New York and may be threatening human health can lead people to see the pollution of · · ~ air as immoral. In the U.S. and other legal systems, awareness of human influence calls into action fundamental norms about responsibility, rights, and

CONFLICT ABOUT HAZARDS AND RISKS 59 due process. When people who are perceived to be innocent are put in jeopardy, discussions about intent, justice, blame, and punishment are almost inevitable. What is at issue is no longer only whether an activity makes people better or worse off but whether the changes are fair and whether the responsible agent has the right to affect other people's well-being. Worsening Worst Cases Modern technology, by making it possible for humans to alter natural processes at the level of the geosphere, has made possible disasters that could not even be fantasized a few generations ago. Already, deforestation is disrupting huge ecosystems, and there is evidence that it, combined with the burning of unprecedented quan- tities of fossil fuel, is altering the earth's temperature and threat- ening to raise the level of the oceans and disrupt the patterns of temperature and precipitation on which world agriculture depends. Although deforestation leading to climatic disruption is not new-it is responsible for the present aridity in much of the Middle East and China human alteration of climate has never before been pos- sible on a global scale. There is dispute over the probability of a climatic catastrophe, but little dispute that global climatic changes of historic proportions are now possible as a result of human activity (Jaeger, 1988~. Similarly, the threat to the earth's ozone layer sug- gests the possibility of human-generated environmental damage on an unprecedented scale. And, of course, the possibility of devastation of whole nations by nuclear weapons is unprecedented. Most of the unprecedented catastrophes scientists have described have a very low probability of occurrence, but because the outcomes are so undesirable the risks are worth considering carefully. However, the low probability makes them hard to analyze. An example is major disasters from nuclear power plant operation. The industry is too young for the probability to be estimated accurately from experience; yet indirect methods of estimation are highly uncertain. Thus people are left with huge disasters to contemplate but no reliable guidance about how seriously to take them. With worsening worst cases, it makes sense to pay attention to smaller and smaller probabilities and to smaller differences between probability estimates. But most people have difficulty understanding very low probabilities (see, e.g., Fischhoff et al., 1981b). They tend to think in the categories of language (such as "never," "rarely,"

60 IMPROVING RISK COMMUNICATION "occasionally," "often," and so forth) rather than along the con- tinuous dimensions of mathematics (cf. Starr and Whipple, 1980~. For very low probability events, nonexperts tend to use two cat- egories, "possible" and "effectively impossible." Thus the changes that have made nightmares into possibilities may drastically alter many people's thinking by making a qualitative change by making them aware of a hazard where they had perceived none. People may pay more attention to the size of the consequences and ignore both the magnitude and the uncertainty of very low probability estimates. The result would be a much-increased concern about catastrophic risks and a corresponding increase in opposition to technologies that pose them. Unintended Side Effects Technological activity has probably always had effects on people who were not directly involved in it, but knowledge of the extent of such effects has increased dramatically in this century. Technological changes are accelerating, as are the materials ant] energy transforma- tions that can disturb preexisting physical and biological systems and affect human well-being. Although people have always been exposed to the side effects of other people's activity, they are now aware of being exposed to much more and at greater distances. There is in- creasing evidence that technological activities can now affect people around the earth by altering air quality, exposing them to ultraviolet radiation, or changing climate. When side effects spread more widely and when that change is recognized, collective action often follows. The risk bearers tend to take up common interest against the risk givers. And when the effects extend across the boundaries of communities and then of nations, the conflicts of interest often enter formal political and diplomatic arenas or, if those are not available, find informal ways of gaining wide attention. Thus increasing technological conflict is due in part to the widening range of technology's effects and the greater social awareness of the change. Changing Portfolio of Hazards The hazards society confronts today are different from those of the past. As noted in Chapter 2, the principal threats to health, especially among the more educated and politically active segments

CONFLICT ABOUT HAZARDS AND RISKS 61 of the public, are now from chronic diseases rather than acute ill- nesses and from illnesses now known to have long latency periods. Sometimes decades pass between exposure ant] effect; sometimes the effect manifests itself only in later generations. Whereas infectious diseases can be convincingly linked to microorganisms in the body, cancer and many other chronic diseases cannot, in general, be con- clusively linked to causative agents.4 People are often unsure what caused such illnesses. Moreover, if they are exposed to a hazard, they cannot know whether they will become ill. People spend more of their lives under a cloud: whenever they are exposed to a "probable carcinogen" or other hazard with delayed potential effects, they may worry about whether it will eventually harm them. If they become ill, they can consider a range of hypotheses about human actions that might have been to blame: past occupational exposure, dietary prac- tice, air pollution, and so forth. Some people agonize over whether they are guilty of causing their own illness; others conclude that they are innocent victims of greed or negligence. The former conclusion produces anxiety; the latter, whether correct or not in any particular instance, motivates lawsuits and other forms of social conflict. Hazards have also changed in that there is more knowledge-and more widespread awareness of hazards to which people are exposed but over which they have no control as individuals. Individuals on their own are helpless to reduce the risks of nuclear war, depletion of the ozone layer, and global climatic change. Media accounts make people acutely aware of other hazards that strike more or less at random, such as airplane hijackings and releases of toxic substances such as at Bhopal or radioactivity such as at Chernobyl. People have learned that some industrial chemicals are toxic but that for many chemicals now widely used in commerce in the United States little is known about whether they threaten human health (National Research Council, 1984~. The anxiety that comes from awareness of apparently uncontrollable risks derives in large part from a sense of uncertainty. People may get the sense that past experience- including longevity tables may not provide a reliable estimate of the risks they face. For highly uncertain risks it is difficult to refute extreme esti- mates of their magnitude. Concerns may persist precisely because of the uncertainty. An example is the concern that AIDS may be trans- mitted by mosquitoes. While technical experts agree that mosquito transmission is too improbable to worry about, a skeptic can main- tain that it has not been proven impossible. Additionally, highly

62 IMPROVING RISK COMMUNICATION uncertain risks generate special conflicts about their management, with decision makers disagreeing widely about how large a margin of safety should be allowed to protect against the occurrence of disas- trous consequences that they agree are unlikely. CHANGES IN U.S. SOCIETY Technological decisions have become more controversial in part because U.S. society has changed in several ways in the era since World War IT. Increasing Affluence For most of those who participate actively in American politics, economic security has allowed certain basic human concerns to recede from awareness and to be replaced by other more indirect threats to personal well-being, including concerns about technology and risk. More and more people have attained a level of economic security that allows them to take up concerns beyond those of feeding and housing themselves and their families, securing basic health care, and providing for these security needs for their old age. And, regardless of socioeconomic level, people whose chief personal values extend beyond personal security are more likely to be concerned with en- vironmental problems than the average citizen (DunIap et al., 1983; Inglehart, 1977~. Thus it is not surprising that affluence has brought increasing concern about the risks of technology. Increasing Dependence of the Economy on Technology The U.S. and world economies have come to depend increasingly on advanced technology for the production of food (petrochemicals) j health care (drugs and other medical technologies), communication (computers and information transmission technology), transporta- tion (jet aircraft), manufactured goods (automation and electric power technologies), and, of course, military security. Such tech- nologies have increasingly been controlled by large, politically and economically powerful organizations with vested interests in discov- ering, developing, and implementing them. They are also supported by individuals who benefit from them economically or in other ways. The new technologies offer great benefits to their sponsors in money or political power and potential benefits and risks to society that may also be large-but poorly understood. The sponsoring organizations

CONFLICT ABOUT HAZARDS AND RISKS 63 need public acquiescence to achieve their technological aims, but for the reasons discussed below that acquiescence has become more dif- ficult to achieve. At the same time proposals to restrict technologies typically meet intense opposition from powerful proponents. Distrust of Institutions Public opinion polling data indicate that there has been a "sharp decline of public faith in government, business, and labor since the mid-1960s" (Lipset and Schneider, 1987:40~. The decline was espe- cially rapid between 1964 and 1975. Other polls have shown similar results, but the decline has been partially reversed more recently (Lipset and Schneider, 1987~. The decline in trust in major institu- tions was in sharp contrast to the especially low level of criticism, distrust, and rebellion in the 1950s (Schudson, 1978~. It was, no doubt, influenced by a series of formative political events of the 1960s and early 1970s. The civil rights movement, the war in Viet- nam and the protest against it, the assassinations of three major national leaders, and, finally, the Watergate scandal all forced atten- tive people to look at the dark side of our national character and national institutions.5 A climate developed in which major decisions by government and industry, including decisions about technology, were increasingly open to question. The Environmental Movement A social movement concerned with environmental protection de- veloped in the 1960s in the United States and has since become a regular participant in technological debates. Influenced by new scien- tific knowledge conveyed in works like Silent Spring (Carson, 1962), large numbers of ordinary people saw for the first time that their personal interests or values were affected by the way society used and regulated technology. They expressed their concerns through environmental and related organizations and by direct pressure on government for action. Although environmental organizations were not new on the American scene, those that had existed before the 1960s, such as the Audubon Society, the Nature Conservancy, and the Sierra Club, had focused mainly on the conservation of wildlife and wilderness. The new organizations, and to some extent the old ones through changes in their political agendas, advanced a new brand of environmentalism concerned with threats to ecosystems and

64 IMPROVING RISK COMMUNICATION global and regional life-support systems and with the protection of people from technologically based threats to health and well-being (Hays, 1987~. The new environmental organizations and their po- litical allies gained widespread public support and raised funds to lobby, to conduct independent scientific analyses of technological is- sues, to participate in regulatory decision processes on matters of concern to their supporters, and to challenge government and corpo- rate decisions in court. They have became an institutional presence in opposition to a range of efforts by industry and government to im- plement controversial new technologies and to further spread existing ones.6 New Public Institutions During the 1960s and 1970s national institutions were being re- structured to pay more attention to social goals, including improved management of societally shared risks. Beginning with passage of the National Environmental Protection Act in 1969, several new govern- ment bodies, such as the U.S. Environmental Protection Agency t~Y`U', the occupational gaiety and Health Administration (1970), the Consumer Product Safety Commission (1972), the Nuclear Reg- ulatory Commission (1975), the Office of Technology Assessment (19721 and the Office of Disease Prevention and Health Promm , ~ A_~\ . . ~ . . . ,, tion (1984), were created to promote and protect public safety and health in specific areas of risk. Courts began to require that med- ical professionals provide patients with better information to guide their decisions about their treatment, and formal procedures for "in- formed consent" came into being (Applebaum et al., 1987; Faden en cl Beauchamp, 1986~. Federal agencies, for their part, began to make more information about risk available to the public, for instance by requiring recor~keeping of the life histories of toxic substances. These changes created new public institutions whose purpose was to make technological decisions in the public arena and that resulted in new settings for conflict. POLITICIZATION OF THE TECHNOLOGICAL DEBATE The above changes in risks, knowledge, and society have con- tributed to the increasing conflict about technology in recent decades. The benefits of technology have increased, but many people believe the risks have as well. The hazards confront more people than ever

r CONFLICT ABOUT HAZARDS AND RISKS 65 before (even if the risks may be less), and they have gained the atten- tion of a wider range of political actors. The attendant choices have huge potential effects on the distribution of wealth, health, and even political power in society. It is no wonder, then, that technological choices have come to concern more people and that the nature of those choices has come to be seen in a different light. As traditional political issues such as public health, social equity, and due process became more prominent in technological decision making, decisions that had been treated as essentially technical and economic, to be de- cided by executives of firms and government agencies with the advice of experts, came to be seen as also being essentially political (Dietz et al., 1989~. The trend toward public involvement can be seen in a recent expansion of "right-to-know" legislation, the effect of which is to disseminate information that citizens can use to heighten their political involvement. The redefinition of environmental problems as political is evident in a number of changes in the political system, as described below. Concepts of Regulation Changes in federal law in the mid-1960s transformed the judicial concept of public interest as used in administrative law in regard to regulatory agencies. Regulatory proceedings were opened to more than just the parties who suffer direct legal injury from government action (Office of Communication of the United Church of Christ v. Federal Communications Commission, 1966; Scenic Hudson Preser- vation Conference v. Federal Power Commission, 1965~. The New Deal notion of a regulatory agency as the embodiment of the public interest gave way to a concept of the regulatory agency as a political, quasi-legisTative forum for the meeting of competing interests (Ack- erman and Hassler, 1977~. It is no wonder, then, that the EPA faced a rapid rise in the number of civil lawsuits challenging its regulations, from under 20 in 1973 to nearly 500 in 1978 (O'Brien and Marchand, 1982:80~. Tort Law Tort law has changed, broadening the ability of different kinds of people and groups to bring legal action and creating new ways for plaintiffs to sue successfully even when there are formidable difficul- ties involved in determining who is responsible for an injury to the

66 IMPROVING RISK COMMUNICATION plaintiff. In the past 30 years private-law adjudication has moved away from caveat emptor and related rules to permit greater access to the judicial arena and to apply more flexible doctrines regard- ing compensation for environmentally caused damages to health and safety (O'Brien and Marchand, 1982~. In the California Supreme Court decision in the case of SindLell v. Abbott L`aboratories, for in- stance (a decision the U.S. Supreme Court let stand in 1980), the court allowed mothers whose children had suffered injury because of the mother's use of diethylstilbestro! (DES) to recover damages with- out being able to identify a particular manufacturer as responsible for the injury. The plaintiffs were allowed to recover by suing those manufacturers who collectively represented a major share of the mar- ket for the product that caused the injury (O'Brien and Marchand, 1982~. Regulatory Procedures Regulatory rule making over the past two decades has evolved a set of procedures that guarantees a variety of interested parties the opportunity to comment on proposed rules and that makes it in- creasingly likely that regulators will have to address those comments as they justify their decisions (Schmanc~t, 1984~. Federal agencies are required by the courts to prepare detailed scientific analyses in support of regulatory actions. These changes occurred in response to increasing conflict about risk and created a channel for the expression of opposition to government agencies' positions. They imposed some limits on what opponents could legitimately raise as objections, but at the same time the new procedures gave the opponents predictable access to the decision process and new opportunities to challenge decisions in court. Politically Potent Symbolic Events A number of incidents have received widespread attention and have become cognitive markers of danger for many people. Just as "Watergate" is synonymous for many with governmental malfea- sance, so "Three Mile Island" has come to represent the dangers of high technology. "Bhop al," "Chernobyl," and "Love Canal" are other such symbols. These reach out beyond the immediate media coverage they receive to become part of the cultural consciousness of many people, even those who know little of or paid little attention to

CONFLICT ABOUT HAZARDS AND RISKS 67 the original incidents (SIovic, 1987~. As a result, the mere mention of these incidents can be a trigger for argument. Increased Focus on Science In Technological Debates The laws and procedures that control governmental decisions about technology in the United States have come increasingly to de- mand scientific and technical knowledge. Some regulations require government to determine whether a particular risk exists and to act accordingly; others require a determination of the "best available technology"; and others explicitly require a weighing of costs and benefits. The National Environmental Policy Act requires the prepa- ration of careful assessments of the environmental and socioeconomic impacts of major technological choices. All these developments put science and scientific disagreements at the center of technological debates. Because of the difficulty, as discussed in Chapter 2, of gath- ering and interpreting all the scientific knowledge relevant to modern technological decisions, there is considerable room for scientists to disagree. When a decision that may have major political effects by altering the distribution of money, power, and well-being in soci- ety is made through procedures that emphasize scientific judgment, scientific disagreements tend to become proxies for political disagree- ments, and political adversaries often express their positions in the language of science (Dickson, 1984; Mazur, 1981; Nelkin, 1979a). In this way the inherent difficulty of understanding technological choices combines with the political importance of their effects to multiply the intensity of conflict. Institutionalization of Scientific Conflict Partly because regulatory decisions now rely so heavily on the evaluation of scientific knowledge, divisions in the scientific commu- nity have become increasingly public. Conflicts that might once have been contained within professional societies now appear occasionally as front-page news. Some environmental organizations and groups of scientists, such as the Federation of American Scientists, whose members share common concerns about controversial technologies, have built scientific resources that allow them to advocate political choices in the technical language of risk and benefit analysis that statutes and regulatory procedures often require. Not to be out- done, industry-based groups have increased their capability to do

68 IMPROVING RISK COMMUNICATION "regulatory science" in support of their positions on the same issues. Thus disagreements between scientists have gained an institutional place in the political debate, with scientists whose analyses support particular positions presenting their judgments on behalf of groups advocating those positions (Schmandt, 1984~. IMPLICATIONS OF CONFLICT FOR COMMUNICATION The above discussion makes clear that many factors have con- tributed to increasing social conflict over hazards and risks. The conflict itself is a multifaceted one. A review of the environmental policy literature has identified four distinct aspects of risk conflicts, as described below. According to a recent survey of scientists, lawyers, and others whose careers are largely devoted to thinking, researching, and debating about technological choices, each of these is a major source of controversy about environmental risk (Dietz and Rycroft, 1987; Dietz et al., 1988~.7 This section distinguishes these four as- pects of technological conflict and discusses the implications of each for risk communication. Differential Enowledge One source of conflict about risk is that experts and nonexperts know different things about the risks and benefits of technology. In particular, technical experts have specialized knowledge about the nature of both the hazards and their benefits that nonexperts, lack- ing this knowledge, may dispute. Conversely, nonexperts sometimes have local knowledge about exposures or the practical operation of a hazardous activity that technical experts do not share. When conflict arises mainly from differential knowledge, risk messages focused on information, which promote the sharing of knowledge, can improve the risk communication process. This realization underlies proposals to design messages that would explain to nonexperts in a clear and simple format what scientists and technologists know about partic- ular risks. It also provides justification for the flow of informational messages from nonexperts to experts. In conflicts that arise from differential knowleclge, better sharing of knowledge may also help reduce the conflict. However, when a conflict is in large part based on other factors, sharing of knowledge may not resolve it. It may even adversely affect the risk communication process if it is perceived as a diversion from the real issues.

CONFLICT ABOUT HAZARDS AND RISKS 69 A second aspect of differential knowledge and conflict is the differences in the degree of understanding in various croups tvDicallv involved in risk issues. lntormat~on simply made available to the public through the mass media and other channels is typically taken up more readily by those with high, rather than Tow, socioeconomic status because the former usually have a higher level of education, enabling them to understand technical material more easily. This leads to what is called a knowledge gap. But the presence of a conflict can change this situation. In certain circumstances the presence of conflict might be seen as positive because it effectively increases the number of people who become informed about the issues involved. ~c, T ~. · · ~ ~_ A_ _ _ I'. ,¢ _ _ ~ __,,, Vested Interests Those who bear the risks of a technology are not always the same people who gain the benefits, and, when the risks and benefits are distributed in unequal proportion, those holding different interests come into conflict. This kind of conflict is most clearly evident in decisions about the siting of locally unwanted facilities such as hazardous waste sites, power lines, and radioactive waste repositories, but it is characteristic of other conflicts about risk as well. When a conflict is based in large part on vested interest, risk messages can be helpful if they clarify what different groups' interests are and describe how the available options would affect each of those interests. Such messages improve risk communication by providing · r ·~ ' I' 'A , But they often do not resolve conflict. Even messages that simply describe scientific information can exacerbate conflict if the information helps clarify who stands to win or lose. Information relevant to the choices at h an r1 Value Differences Differences in values also underlie conflict about risk. For in- stance, some people may believe that a potential catastrophe should be avoided by not adopting a technology that might produce it __1 e] ~ 1 "d ~ . ~ wane orners may believe that potential problems could be solved after the technology is implemented but before the problems become too serious e In trade-offs between economic growth and threats to health and to esthetic, ecological, or community values, political participants who expect the same outcome may still disagree with each other because what they may gain or lose does not have the

70 IMPROVING RISK COMMUNICATION same value to each of them. The source of such disputes may lie in people's relative preferences for values (e.g., money versus beauty), their beliefs in society's ability to control technologies once intro- duced, or their predispositions about how much risk to take under conditions of uncertainty. When a conflict is based in large part on differences in values, the following types of messages can make risk communication more successful: statements identifying the values at stake, arguments about which values deserve the most weight, and analyses of how each available option would affect different values. As with conflicts based on different interests, messages that improve knowledge relevant to the choices at hand and that therefore raise the quality of risk communication can at the same time make the conflict more intense. Even messages describing scientific analysis can have this effect, by clarifying which values an alternative would advance or impede. Mistrust of Expert Enowledge as Interest Serving Public mistrust of information from government and industry sources also underlies conflict about technology. Many people are aware that experts can be found who will support nearly any position in a technological debate. They realize that industry groups tend to produce only those scientific arguments that advance their goals and that environmental groups do the same. They know that even the federal government has been subject to strong accusations that its scientific analyses have been influenced by political pressure from various interest groups (e.g., Nelkin and Brown, 1984; Smith, 1983~. Thus the statements of scientific experts in risk debates are seen by the skeptical parts of the public as reflecting political positions rather than unbiased assessments. Particular types of messages cannot by themselves alleviate mistrust, although altered procedures for the design of risk messages may help (see Chapters 6 and 7~. Rather, the effect of mistrust is to make communication more difficult in all contexts. Note for Risk Message Designers In most risk debates some participants are concerned with nar- rower issues of risk analysis, some with interests, some with value questions, and some with issues of trust. For this reason, different participants want to send and receive different kinds of risk mes- sages, and the risk communication process includes the full range of

CONFLICT ABOUT HAZARDS AND RISKS 71 types of messages mentioned here scientific analyses, expressions of interest and value, and arguments about which values to favor. The designers of risk messages need to be aware that a program of messages that addresses one source of conflict may fail to address other sources. Thus someone who designs a message to eliminate differential knowledge may find an audience concerned with interests or values or one that mistrusts the message source and the message may not have the desired effect. Such a message may even intensify conflict because the audience sees it as irrelevant or as a diversion from what it considers to be the main issue. Risk communication is difficult in part because risk messages often seem to operate at cross-purposes. The next chapter distin- guishes the major settings of risk communication and the major purposes for risk messages. It explores the issue of what techniques are appropriate for risk messages, particularly when the purpose is to influence the recipients' beliefs or actions. NOTES 1. Conflict also occurs about the benefits of technological choices. This chapter discusses the risks because they have usually been the focus of the most intense convict. 2. The headings "It is the safest of times and Lit is the riskiest of times" are quoted from Denton Morrison's paper, `'A Tale of Two Toxicities" (1987~. 3. Although public support for increased environmental regulation is strong, as evidenced by direct questions on opinion surveys, environmental problems are not usually mentioned with great frequency in response to open- ended questions such as, "What are the three most important problems facing the nations 4. Some types of cancer are clearly linked to chemical exposures: mesothe- lioma and asbestos, vaginal cancer and diethylstilbestrol (DES), bladder cancer and benzidine dyes. In these situations the inference about possible causal agents involves assessment of statistical evidence (e.g., epidemiological studies) and biological evidence on the plausibility of the linkage between agent and disease [e.g., gasoline vapors cause kidney tumors in male rats, but the mecha- nism is not believed applicable to human kidney cancer (EPA Science Advisory Board, 1988~. 5. Research on the ways social movements mobilize citizens' attention and participation has recently been reviewed by Cohen (1985) and Jenkins (1983~. 6. Recent studies on the growth of the environmental movement include those by Hays (1987), Milbrath (1984), and Touraine et al. (1983~. 7. That is, each of these four aspects of conflict was rated as a major source of controversy about environmental risk by a majority of the "risk professionals" in the survey sample.

Next: 4 Purposes of Risk Communication and Risk Messages »
Improving Risk Communication Get This Book
×
Buy Paperback | $100.00
MyNAP members save 10% online.
Login or Register to save!
Download Free PDF

Technological risk and the process of explaining risks to the public have become major public issues. The mention of Bhopal or Love Canal can provoke emotional arguments—not only about the hazards themselves but also about how they were explained to the public. As new laws, the threat of AIDS, and other factors make risk communication more crucial, officials in government and industry are seeking guidelines on how to communicate effectively and responsibly.

This volume offers an approach to better quality in risk communication. The combined insight of experts from government, business, and universities, Improving Risk Communication draws on the most current academic and practical information and analysis. Issues addressed include why risk communication has become more difficult in recent decades, what the major problems are, and how common misconceptions often hamper communication campaigns. Aimed especially at top decisionmakers in government and industry, the book emphasizes that solving the problems of risk communication is as much about improving procedures as improving the content of risk messages.

Specific recommendations for change include a Risk Message Checklist and a call for developing a consumer's guide to risk. Appendixes provide additional details.

  1. ×

    Welcome to OpenBook!

    You're looking at OpenBook, NAP.edu's online reading room since 1999. Based on feedback from you, our users, we've made some improvements that make it easier than ever to read thousands of publications on our website.

    Do you want to take a quick tour of the OpenBook's features?

    No Thanks Take a Tour »
  2. ×

    Show this book's table of contents, where you can jump to any chapter by name.

    « Back Next »
  3. ×

    ...or use these buttons to go back to the previous chapter or skip to the next one.

    « Back Next »
  4. ×

    Jump up to the previous page or down to the next one. Also, you can type in a page number and press Enter to go directly to that page in the book.

    « Back Next »
  5. ×

    To search the entire text of this book, type in your search term here and press Enter.

    « Back Next »
  6. ×

    Share a link to this book page on your preferred social network or via email.

    « Back Next »
  7. ×

    View our suggested citation for this chapter.

    « Back Next »
  8. ×

    Ready to take your reading offline? Click here to buy this book in print or download it as a free PDF, if available.

    « Back Next »
Stay Connected!