National Academies Press: OpenBook

Frontiers of Engineering: Reports on Leading-Edge Engineering from the 2011 Symposium (2012)

Chapter: Introduction--Timothy Denison and Justin Williams

« Previous: NEUROPROSTHETICS
Suggested Citation:"Introduction--Timothy Denison and Justin Williams." National Academy of Engineering. 2012. Frontiers of Engineering: Reports on Leading-Edge Engineering from the 2011 Symposium. Washington, DC: The National Academies Press. doi: 10.17226/13274.
×

Introduction

TIMOTHY DENISON
Medtronic

JUSTIN WILLIAMS
University of Wisconsin

The brain has always been attractive to engineers. Neurons and their connections, like tiny circuit elements, process and transmit information in a dramatic way that is intimately curious to researchers in the computer science and engineering fields. Neurons are amazing computational devices capable of both robust response to widely varied inputs and adaptability to changing conditions. Our most advanced computing systems are still dwarfed by the computational power of the human brain. Even small groups of neurons are capable of intricate interactions that produce basic mechanisms of learning and memory, highly parallel processing, and exquisite sensing capabilities.

Science has made great strides in the past few decades toward uncovering the basic principles underlying the brain’s ability to receive sensation and control movement. These discoveries, along with revolutionary advances in computing power and microelectronics technology, have led to an emerging view that neural prosthetics, or electronic interfaces with the brain for restoration or augmentation of physiological function, may one day be possible. While the creation of a “six million dollar man” may still be far into the future, neural prostheses are rapidly becoming real potential treatments for a broad range of patients with injury or disease of the nervous system.

This session focuses on the types of engineering technology used to interface with the nervous system. This includes technology for stimulating the nervous system for restoration of sensory function as well as methods for extracting motor intention from the brain for use in artificial prostheses. In addition, we consider how lessons learned about the way the nervous system processes information can also be applied to circuit design—both for prosthetics and consumer circuits in general.

Suggested Citation:"Introduction--Timothy Denison and Justin Williams." National Academy of Engineering. 2012. Frontiers of Engineering: Reports on Leading-Edge Engineering from the 2011 Symposium. Washington, DC: The National Academies Press. doi: 10.17226/13274.
×

The papers in this session give perspectives from both academia and industry. Clinical studies are presented that span both basic research and commercial applications. Finally, discussion of emerging technologies that combine genetic and optical approaches provide a glimpse into the state of the art in neural interfacing technology.

James Weiland (Doheny Eye Institute, University of Southern California) covers the historical use of electrical stimulation of the nervous system and then focuses on recent clinical development of retinal implants to restore sight. He also gives a brief overview on the emerging field of optogenetics. Eric Leuthardt (Washington University) discusses the use of neural recording devices to extract motor command signals for applications as communication aids and brain machine interfaces for disabled populations. Finally, Rahul Sarpeshkar (Massachusetts Institute of Technology) presents new paradigms of “neuromorphic” processing—how we can learn from the brain’s amazing processing properties and apply that knowledge in next-generation applications like cochlear prostheses.

Suggested Citation:"Introduction--Timothy Denison and Justin Williams." National Academy of Engineering. 2012. Frontiers of Engineering: Reports on Leading-Edge Engineering from the 2011 Symposium. Washington, DC: The National Academies Press. doi: 10.17226/13274.
×
Page 113
Suggested Citation:"Introduction--Timothy Denison and Justin Williams." National Academy of Engineering. 2012. Frontiers of Engineering: Reports on Leading-Edge Engineering from the 2011 Symposium. Washington, DC: The National Academies Press. doi: 10.17226/13274.
×
Page 114
Next: Retinal Prosthetic Systems for Treatment of Blindness--James D. Weiland and Mark S. Humayun »
Frontiers of Engineering: Reports on Leading-Edge Engineering from the 2011 Symposium Get This Book
×
 Frontiers of Engineering: Reports on Leading-Edge Engineering from the 2011 Symposium
Buy Paperback | $45.00 Buy Ebook | $36.99
MyNAP members save 10% online.
Login or Register to save!
Download Free PDF

The practice of engineering is continually changing. Engineers today must be able not only to thrive in an environment of rapid technological change and globalization, but also to work on interdisciplinary teams. Cutting-edge research is being done at the intersections of engineering disciplines, and successful researchers and practitioners must be aware of developments and challenges in areas that may not be familiar to them.

At the U.S. Frontiers of Engineer Symposium, engineers have the opportunity to learn from their peers about pioneering work being done in many areas of engineering. Frontiers of Engineering 2011: Reports on Leading-Edge Engineering from the 2011 Symposium highlights the papers presented at the event. This book covers four general topics from the 2011 symposium: additive manufacturing, semantic processing, engineering sustainable buildings, and neuro-prosthetics. The papers from these presentations provide an overview of the challenges and opportunities of these fields of inquiry, and communicate the excitement of discovery.

READ FREE ONLINE

  1. ×

    Welcome to OpenBook!

    You're looking at OpenBook, NAP.edu's online reading room since 1999. Based on feedback from you, our users, we've made some improvements that make it easier than ever to read thousands of publications on our website.

    Do you want to take a quick tour of the OpenBook's features?

    No Thanks Take a Tour »
  2. ×

    Show this book's table of contents, where you can jump to any chapter by name.

    « Back Next »
  3. ×

    ...or use these buttons to go back to the previous chapter or skip to the next one.

    « Back Next »
  4. ×

    Jump up to the previous page or down to the next one. Also, you can type in a page number and press Enter to go directly to that page in the book.

    « Back Next »
  5. ×

    Switch between the Original Pages, where you can read the report as it appeared in print, and Text Pages for the web version, where you can highlight and search the text.

    « Back Next »
  6. ×

    To search the entire text of this book, type in your search term here and press Enter.

    « Back Next »
  7. ×

    Share a link to this book page on your preferred social network or via email.

    « Back Next »
  8. ×

    View our suggested citation for this chapter.

    « Back Next »
  9. ×

    Ready to take your reading offline? Click here to buy this book in print or download it as a free PDF, if available.

    « Back Next »
Stay Connected!