National Academies Press: OpenBook

Frontiers of Engineering: Reports on Leading-Edge Engineering from the 2011 Symposium (2012)

Chapter: Introduction--Aleksandar Kuzmanovic and Amarnag Subramanya

« Previous: SEMANTIC PROCESSING
Suggested Citation:"Introduction--Aleksandar Kuzmanovic and Amarnag Subramanya." National Academy of Engineering. 2012. Frontiers of Engineering: Reports on Leading-Edge Engineering from the 2011 Symposium. Washington, DC: The National Academies Press. doi: 10.17226/13274.
×

Introduction

ALEKSANDAR KUZMANOVIC
Northwestern University

AMARNAG SUBRAMANYA
Google Research

Semantics is the study of meaning. A large number of naturally occurring phenomena follow certain semantic rules, for example, the semantics of human speech, semantics associated with an image of a scene, and the semantics of natural language. Accurate semantic processing is required for a number of high-level information-understanding tasks such as inferring author sentiment given a blog or review; searching through a collection of documents, images, and videos; and translating text from one language to another. For example, it may be hard to infer the positive sentiment expressed by the statement, “The Prince of Egypt succeeds where other movies have failed,” without the aid of semantics-based inference.

In the past few years, there has been an explosion in the amount of humangenerated content on the Internet and exponential growth in the number of times a user turns to the Internet to perform a daily activity. It is estimated that we create about 1.6 billion blog posts, 60 billion emails, 2 million photographs, and 200,000 videos on the Internet every day. These days, users read the news, watch television, and stay connected to their friends and family via the Internet, yet users’ need for Internet-based applications is now greater than ever before. Satisfying these ever-increasing demands requires a deeper semantic understanding of all the content on the Web. This session focuses on semantics processing algorithms for natural language and images since they constitute a large majority of the data on the Internet.

In the context of natural language, there are many different levels of semantic processing, ranging from word- and sentence-level analysis to more complex analysis of discourse. The task of understanding the meaning of words and their relationships falls under the former; whereas, the ability to infer the meaning of pronouns (e.g., he, she) and inferring sentiment expressed by a paragraph are

Suggested Citation:"Introduction--Aleksandar Kuzmanovic and Amarnag Subramanya." National Academy of Engineering. 2012. Frontiers of Engineering: Reports on Leading-Edge Engineering from the 2011 Symposium. Washington, DC: The National Academies Press. doi: 10.17226/13274.
×

examples of the latter. Ani Nenkova (University of Pennsylvania) begins with a survey of some of the techniques that have been successfully applied to automatic text understanding and will point out some of the outstanding challenges. She also sheds light on the impact that text quality has on semantic processing algorithms.

The proliferation of Internet use has led to the creation of large bodies of knowledge such as Wikipedia. Furthermore, the social aspect of the Web has resulted in collaboratively generated content (e.g., Yahoo! Answers). Accurate semantic processing of such sources of knowledge can lead to knowledge-rich approaches to information access that go far beyond the conventional word-based methods. Evgeniy Gabrilovich (Yahoo! Research) describes using collaboratively generated content for representing the semantics of natural language and presents new information retrieval algorithms enabled by this representation.

Images and video form a key component of the overall Internet experience. Accurate semantic understanding of images and video can lead to faster and better search. Samy Bengio (Google Research) discusses algorithms that learn how to “embed” images and their descriptions (labels or annotations) within a common space. Such a space can be used to find the nearest annotations to a given image. He shows how one can construct a “visio-semantic” tree from such annotations.

Tables, plots, graphs, and diagrams are yet another way information is represented on web pages. These data-driven images are complicated objects that have a close relationship with the surrounding text. For example, they may be used to illustrate the text’s conclusions or provide additional data. Unfortunately, state-of-the-art algorithms treat diagrams in the same way as photos or illustrations. As a result, searching for a relevant diagram online often yields very poor quality results. Michael Cafarella (University of Michigan) covers smart semantic processing algorithms for plots, graphs, and diagrams. He also discusses ways such data can be summarized to make it easier for end-user consumption.

Suggested Citation:"Introduction--Aleksandar Kuzmanovic and Amarnag Subramanya." National Academy of Engineering. 2012. Frontiers of Engineering: Reports on Leading-Edge Engineering from the 2011 Symposium. Washington, DC: The National Academies Press. doi: 10.17226/13274.
×
Page 47
Suggested Citation:"Introduction--Aleksandar Kuzmanovic and Amarnag Subramanya." National Academy of Engineering. 2012. Frontiers of Engineering: Reports on Leading-Edge Engineering from the 2011 Symposium. Washington, DC: The National Academies Press. doi: 10.17226/13274.
×
Page 48
Next: Automatic Text Understanding of Content and Text Quality--Ani Nenkova »
Frontiers of Engineering: Reports on Leading-Edge Engineering from the 2011 Symposium Get This Book
×
 Frontiers of Engineering: Reports on Leading-Edge Engineering from the 2011 Symposium
Buy Paperback | $45.00 Buy Ebook | $36.99
MyNAP members save 10% online.
Login or Register to save!
Download Free PDF

The practice of engineering is continually changing. Engineers today must be able not only to thrive in an environment of rapid technological change and globalization, but also to work on interdisciplinary teams. Cutting-edge research is being done at the intersections of engineering disciplines, and successful researchers and practitioners must be aware of developments and challenges in areas that may not be familiar to them.

At the U.S. Frontiers of Engineer Symposium, engineers have the opportunity to learn from their peers about pioneering work being done in many areas of engineering. Frontiers of Engineering 2011: Reports on Leading-Edge Engineering from the 2011 Symposium highlights the papers presented at the event. This book covers four general topics from the 2011 symposium: additive manufacturing, semantic processing, engineering sustainable buildings, and neuro-prosthetics. The papers from these presentations provide an overview of the challenges and opportunities of these fields of inquiry, and communicate the excitement of discovery.

READ FREE ONLINE

  1. ×

    Welcome to OpenBook!

    You're looking at OpenBook, NAP.edu's online reading room since 1999. Based on feedback from you, our users, we've made some improvements that make it easier than ever to read thousands of publications on our website.

    Do you want to take a quick tour of the OpenBook's features?

    No Thanks Take a Tour »
  2. ×

    Show this book's table of contents, where you can jump to any chapter by name.

    « Back Next »
  3. ×

    ...or use these buttons to go back to the previous chapter or skip to the next one.

    « Back Next »
  4. ×

    Jump up to the previous page or down to the next one. Also, you can type in a page number and press Enter to go directly to that page in the book.

    « Back Next »
  5. ×

    Switch between the Original Pages, where you can read the report as it appeared in print, and Text Pages for the web version, where you can highlight and search the text.

    « Back Next »
  6. ×

    To search the entire text of this book, type in your search term here and press Enter.

    « Back Next »
  7. ×

    Share a link to this book page on your preferred social network or via email.

    « Back Next »
  8. ×

    View our suggested citation for this chapter.

    « Back Next »
  9. ×

    Ready to take your reading offline? Click here to buy this book in print or download it as a free PDF, if available.

    « Back Next »
Stay Connected!