HEALTH AND MEDICINE DIVISION

Public Health Consequences of E-Cigarettes

January 23, 2018

Committee

- David L. Eaton (Chair) David Mendez
- Anthony J. Alberg
- Maciej Goniewicz
- Adam Leventhal
- José E. Manatou
- Sharon McGrath-Morrow David A. Savitz

- Richard Miech
- Ana Navas-Acien
- Kent E. Pinkerton
- Nancy A. Rigotti
- Gideon St. Helen

Statement of Task

- Evaluate the available evidence of the health effects related to the use of electronic nicotine delivery systems (ENDS)
- Identify future federally funded research needs

Terminology: What are E-Cigarettes?

- Heterogeneous group of products that are referred to using a widely variably terminology (e.g., ENDS, electronic cigarettes, vaporizers, mods, tanks)
- May or may not contain nicotine*
- Excludes heat-not-burn products*

*As clarified by Mitchell Zeller, Director of FDA Center for Tobacco Products, at the committee's first meeting

Report Organization

Section I: E-Cigarette Devices,

Constituents, and Exposures

Section II: Effects of E-Cigarettes on Health

Section III: Public Health Implications of

E-Cigarettes

Committee Approach

- Literature Search
 - February 1, 2017 to August 31, 2017
 - 6 databases
 - Approximately 4,200 unique results identified; over 800 reviewed for the report
- Literature Review and Quality Assessment
- Approach to Assessing Causality
 - Evidence Synthesis (Hill's criteria)
- Levels of Evidence and Conclusions

Approach to Assessing Causality

- First examined evidence on distal health outcomes [E], then moved up the causal chain to intermediate/short-term outcomes, mechanisms/modes of action, and exposures
- Considered human data most relevant and animal data supportive
- In vitro data useful for hypothesis generation and understanding mechanisms, but relevance for establishing human health risk uncertain

Levels of Evidence Framework

- Conclusive
- Substantial
- Moderate
- Limited
- Insufficient
- No available

(not evidence of no effect)

- More, higher quality studies (e.g., randomized and nonrandomized controlled studies)
- Conclusions can be made
- Greater confidence that limitations (including chance, bias, and confounding factors) can be ruled out)

Devices, Uses, and Exposures

- a. Generic Combustible Tobacco Cigarette
- b. First Generation E-Cigarette
- c. Second Generation E-Cigarette
- d. Third Generation E-Cigarette

DISCLAIMER

These illustrations are intended to be generic representations of a device within each of the depicted categories. They are not meant to represent or endorse any specific product or manufacturer.

SCIENCES Academies of MEDICINE

Source: Figure 3-1

^{*}shown to demonstrate approximate scale

Toxicology of Constituents

- Conclusive evidence that ...
 - most e-cigarette products contain and emit numerous potentially toxic substances. [5-1]
 - the number, quantity, and characteristics of [these] substances emitted ... is highly variable and depends on product characteristics ... and how the device is operated. [5-2]
- Substantial evidence that ... under typical conditions of use, exposure to potentially toxic substances from e-cigarettes is significantly lower compared with combustible tobacco cigarettes. [5-3]

Nicotine

- Conclusive evidence that exposure to nicotine from e-cigarettes is highly variable and depends on product characteristics ... and how the device is operated. [4-1]
- Substantial evidence that nicotine intake from e-cigarette devices among experienced adult e-cigarette users can be comparable to that from combustible tobacco cigarettes.[4-2]

Metals

- Substantial evidence that e-cigarette aerosol contains metals [5-4]
- Limited evidence that the number of metals in e-cigarette aerosol could be greater than the number of metals in combustible tobacco cigarettes.* [5-5]

Health Effects Evaluated

- Modes of Action
 - Endothelial CellDysfunction
 - Oxidative Stress
- Dependence & Abuse Liability
- Cardiovascular Diseases

- Cancers
- Respiratory Diseases
- Oral Diseases
- Reproductive & Developmental Effects
- Injuries & Poisonings

Approach to Evaluation of Health Effects

- Characterization of Disease Endpoints and Intermediate Outcomes
- Optimal Study Design
- Questions Addressed by the Literature
 - Considered comparisons to unexposed and to smokers as appropriate
- Evidence Review
- Synthesis and Conclusions
- Vulnerable/Susceptible Populations

Dependence & Abuse Liability

- Substantial evidence that e-cigarette use results in symptoms of dependence on e-cigarettes[8-1]
- Moderate evidence that
 - risk and severity of dependence are lower for ecigarettes than combustible tobacco cigarettes [8-2]
 - variability in e-cigarette product characteristics ... is an important determinant of risk and severity [8-3]

Cardiovascular Diseases

- No available evidence whether or not ecigarette use is associated with clinical cardiovascular outcomes ... and subclinical atherosclerosis [9-1]
- Substantial evidence that heart rate increases after nicotine intake from e-cigarettes [9-2]
- Moderate evidence that diastolic blood pressure increases after nicotine intake from e-cigarettes [9-3]

Cardiovascular Diseases

- Limited evidence that e-cigarette use is associated with a short-term increase in systolic blood pressure, changes in biomarkers of oxidative stress, increased endothelial dysfunction and arterial stiffness, and autonomic control. [9-4]
- Insufficient evidence that e-cigarette use is associated with longterm changes in heart rate, blood pressure, and cardiac geometry and function. [9-5]

Cancers

• Limited evidence from in vivo animal studies using intermediate biomarkers of cancer to support the hypothesis that long-term e-cigarette use could increase the risk of cancer [but] no available evidence whether or not e-cigarette use is associated with intermediate cancer endpoints in humans* [10-1, 10-2]

Cancers

- No available evidence from adequate long-term animal bioassays of ecigarette aerosol exposures to inform cancer risk [10-2]
- Limited evidence that e-cigarette aerosol can be mutagenic or cause DNA damage in humans, animal models, and human cells in culture [10-3]
- Substantial evidence that some chemicals present in e-cigarette aerosols are capable of causing DNA damage and mutagenesis* ... Whether or not the levels of exposure are high enough to contribute to human carcinogenesis remains to be determined [10-4]

Respiratory Diseases

- No available evidence whether or not ecigarettes cause respiratory diseases in humans [11-1]
- Moderate evidence for increased cough and wheeze in adolescents who use e-cigarettes and an association with e-cigarette use and an increase in asthma exacerbations [11-4]
- Limited evidence of adverse effects of e-cigarette exposure on the respiratory system from animal and in vitro studies [11-5]

Respiratory Diseases

Limited evidence for

- improvement in lung function and respiratory symptoms among adult smokers with asthma who switch to e-cigarettes completely or in part (dual use) [11-2]
- reduction of COPD exacerbations among adult smokers with COPD who switch to e-cigarettes completely or in part (dual use) [11-3]

Injuries & Poisonings

- Conclusive evidence that ...
 - e-cigarette devices can explode and cause burns and projectile injuries ... [especially] when batteries are of poor quality, stored improperly, or are being modified by users [14-1]
 - intentional or accidental exposure to e-liquids (from drinking, eye contact, or dermal contact) can result in adverse health effects ... and can be fatal [14-2, 14-3]

Public Health Implications of E-Cigarettes

- Smoking among Youth and Young Adults
- Smoking Cessation among Adults
- Harm Reduction
- Modeling of E-Cigarette Use

Youth & Young Adult Smoking: Ever Use

• Substantial evidence that e-cigarette use increases risk of ever using combustible tobacco cigarettes among youth and young adults [16-1]

Youth & Young Adult Smoking: Smoking Progression

Among youth and young adult e-cigarette users who ever use combustible tobacco cigarettes:

- Moderate evidence that e-cigarette use increases the frequency and intensity of subsequent combustible tobacco cigarette smoking [16-2]
- Limited evidence that e-cigarette use increases, in the near term, the duration of subsequent combustible tobacco cigarette smoking [16-3]

Adult Smoking Cessation

Limited evidence that e-cigarettes may be effective aids to promote smoking cessation overall^{a,b} [17-1]

^aVery little data from randomized controlled trials ^bResults of trials and observational studies often differ

Adult Smoking Cessation

- Moderate evidence from randomized controlled trials that ecigarettes with nicotine are more effective than e-cigarettes without nicotine for smoking cessation [17-2]
- Insufficient evidence from randomized controlled trials about the effectiveness of e-cigarettes as cessation aids compared with no treatment or to FDA-approved smoking cessation treatments [17-3]
- Moderate evidence from observational studies that more frequent use of e-cigarettes is associated with increased likelihood of cessation [17-4]

Harm Reduction: Complete Switching

- Conclusive evidence that completely substituting ecigarettes for combustible tobacco cigarettes reduces users' exposure to numerous toxicants and carcinogens present in combustible tobacco cigarettes [18-1]
- Substantial evidence that completely switching from regular use of combustible tobacco cigarettes to e-cigarettes results in reduced short-term adverse health outcomes in several organ systems [18-2]

Harm Reduction: Dual Use

- No available evidence whether or not long-term ecigarette use among smokers (dual use) changes morbidity or mortality compared with those who only smoke combustible tobacco cigarettes [18-3]
- Insufficient evidence that e-cigarette use changes short-term adverse health outcomes in several organ systems in smokers who continue to smoke combustible tobacco cigarettes (dual users) [18-4]

Secondhand Exposure

- Conclusive evidence that e-cigarette use increases airborne concentrations of particulate matter and nicotine in indoor environments compared with background levels [3-1]
- Moderate evidence that secondhand exposure to nicotine and particulates is lower from e-cigarettes compared with combustible tobacco cigarettes [18-5]
- Limited evidence that e-cigarette use increases levels of nicotine and other e-cigarette constituents on a variety of indoor surfaces compared with background levels. [3-2]

- Mendez-Warner model of smoking prevalence and health effects
- Range of assumptions about e-cigarette effects on:
 - Smoking initiation rate (0, 5, 10, 25, and 50% increase),
 - Smoking cessation rate (-5, 0, 5, 10, and 15% increase), and
 - Relative harm of e-cigarettes compared to combustible tobacco cigarettes (0, 10, 25, and 50% as harmful)
- Period: 2015-2050 and 2015-2070
- Outcomes: life years lost/gained because of e-cigarettes compared to the status-quo (no e-cigarette effects)

2015-2050		-	rs lost du	e to e-	cigs (in N	lillions)									
E-cigs = 10	% x risk of	combus	stibles		_											
Ι.					Ces	sation	Increases	by								
		-5	-5% 0% 5% 10% 15 %													
	0%		1.4		0.0		(1.1)		(2.2)		(3.2)					
δ	5%		1.5		0.1		(1.0)		(2.1)		(3.1)					
ion	10%		1.5		0.1		(1.0)		(2.1)		(3.1)					
Initiation	25%		1.7		0.3		(0.8)		(1.9)		(2.9)					
Init	50%		2.1		0.7		(0.5)		(1.5)		(2.6)					

2015-2070		Life-ye	ars lost du	ie to e	cigs (in N	1illions)									
E-cigs = 10	% x risk o	f combu	stibles													
					Ces	ssation	Increases	by								
ı		-	-5% 0% 5% 10% 15 %													
	0%		2.4		0.0		(2.3)		(4.5)		(6.6)					
þ	5%		3.1		0.7		(1.7)		(3.9)		(6.0					
ion ses	10%		3.8		1.4		(1.0)		(3.2)		(5.3)					
nitiation ncreases	25%		5.9		3.4		1.0		(1.2)		(3.3)					
Init Inc	50%		9.3		6.8		4.4		2.1		(0.0)					

If e-cigarettes increase smoking initiation by 5% and smoking cessation by 15% from 2015 on, there would be a net 3.1 million cumulative life-years saved by the year 2050

2015-2070		Life-ye	ars lost du	ie to e	-cigs (in N	/lillions	·)									
E-cigs = 10	% x risk of	combu	stibles													
					Ce	ssation	Increases	by								
		-	-5% 0% 5% 10% 15%													
	0%		2.4		0.0		(2.3)		(4.5)		(6.6)					
β	5%		3.1		0.7		(1.7)		(3.9)		(6.0)					
ion	10%		3.8		1.4		(1.0)		(3.2)		(5.3)					
nitiation	25%		5.9		3.4		1.0		(1.2)		(3.3)					
Ini	50%		9.3		6.8		4.4		2.1		(0.0)					

If e-cigarettes increase smoking initiation by 50% and decrease smoking cessation by 5% from 2015 on, there would be a net 9.3 million cumulative life-years lost by the year 2070

2015-2050)	Life-ye	ars lost du	ue to e-cigs (in	Millions	;)				
E-cigs = 10	% x risk of	combu	stibles							
				Co	essation	Increases	by			
		-	5%	0%		5%		10%	1	L5%
	0%		1.4	0.0		(1.1)		(2.2)		(3.2)
by	5%		1.5	0.1		(1.0)		(2.1)		(3.1)
ion	10%		1.5	0.1		(1.0)		(2.1)		(3.1)
Initiation Increases	25%		1.7	0.3		(0.8)		(1.9)		(2.9)
Init Inc	50%		2.1	0.7		(0.5)		(1.5)		(2.6)

If e-cigarettes increase smoking initiation by 5% and smoking cessation by 15% from 2015 on, there would be a net 3.1 million cumulative lifeyears saved by the year 2050

2015-207	0	Life-ye	ars lost du	ie to e	cigs (in N	1illions)				
E-cigs = 1	0% x risk of	combu	ıstibles								
					Ces	sation	Increases	by			
		-	-5%		0%		5%	:	10%	1	15%
	0%		2.4		0.0		(2.3)		(4.5)		(6.6)
<u>à</u>	5%		3.1		0.7		(1.7)		(3.9)		(6.0)
ion	1%		3.8		1.4		(1.0)		(3.2)		(5.3)
nitiation ncreases	25%		5.9		3.4		1.0		(1.2)		(3.3)
in or	50%		9.3		6.8		4.4		2.1		(0.0)

2015-2050		•		ue to	e-cigs (in N	lillion	ıs)								
E-cigs = 25	% x risk of	comb	ustibles					_							
١ .	Cessation Increases by														
		_5% 0% 5% 10% 15%													
	0%		1.4		0.0		(0.8)		(1.7)		(2.4)				
γ	5%		1.5		0.1		(0.8)		(1.6)		(2.4)				
ion	10%		1.5		0.1		(0.7)		(1.5)		(2.3)				
nitiation	25%		1.7		0.3		(0.5)		(1.3)		(2.1)				
Init	50%		2.1		0.7		(0.2)		(1.0)		(1.8)				

2015-2070		Life-y	ears lost du	ue to	e-cigs (in N	1illion	s)									
E-cigs = 25	% x risk of	comb	oustibles													
_	Cessation Increases by															
			<u>-5%</u> 0% 5% 10% 15%													
	0%		2.4		0.0		(1.7)		(3.3)		(4.8					
γq	5%		3.1		0.7		(1.0)		(2.6)		(4.1					
ion	10%		3.8		1.4		(0.3)		(1.9)		(3.4)					
nitiation ncreases	25%		5.9		3.4	•	1.7		0.1		(1.4)					
Ini	50%		9.3		6.8		5.1		3.4		1.9					

- In all scenarios where e-cigarettes increase the smoking cessation rate, the modeling projects that use of these products will generate a net public health benefit at least in the short run (by 2050)
- The harms from increased initiation by youth will take time to manifest, occurring decades after the benefits of increased cessation are seen

- For long-range projections (e.g., 50 years out), the net public health benefit is substantially less, and is negative under some scenarios due to the harms from increased initiation.
- If e-cigarette use does not increase the smoking cessation rate, the model projects that there would be net public health harm in the short and long term

- While there is uncertainty about the relative harm of ecigarettes compared to combustible tobacco and their effect on smoking initiation and cessation, the available evidence suggests that:
 - E-cigarettes are likely to be substantially less harmful than combustible tobacco
 - E-cigarette use is not likely to increase the smoking initiation rate by more than 10%
 - E-cigarette use is likely to increase the smoking cessation rate within the 5% - 15% range

2015-2050		Life-ye	ars lost du	e to e-ci	gs (in N	lillions)								
E-cigs = 10	% x risk o	f combu	stibles												
_					Ces	sation	Increases	by							
		-	-5% 0% 5% 10% 15 %												
	0%		1.4		0.0		(1.1)		(2.2)		(3.2)				
λq	5%		1.5		0.1		(1.0)		(2.1)		(3.1)				
ion	10%		1.5		0.1		(1.0)		(2.1)		(3.1)				
nitiation ncreases	25%		1.7		0.3		(0.8)		(1.9)		(2.9)				
Init	50%		2.1		0.7		(0.5)		(1.5)		(2.6)				

2015-2070		Life-ye	ars lost du	ie to e-	cigs (in N	lillions)									
E-cigs = 10	% x risk o	f combu	stibles													
					Ces	sation	Increases	by								
		-	-5% 0% 5% 10% 15%													
	0%		2.4		0.0		(2.3)		(4.5)		(6.6					
ρ	5%		3.1		0.7		(1.7)		(3.9)		(6.0					
ion	10%		3.8		1.4		(1.0)		(3.2)		(5.3					
nitiation ncreases	25%		5.9		3.4		1.0		(1.2)		(3.3					
Init	50%		9.3		6.8		4.4		2.1		(0.0					

- The modeling results suggest that, under likely scenarios, the use of e-cigarettes in the population will result in a net public health benefit.
- Under extreme adverse assumptions, the modeling projects a net public health loss

Moving Forward

- More and better research is needed to clarify the short-and long-term health effects of ecigarettes in individuals and populations
- The committee's approach to evaluating the health effects of e-cigarettes provides a generalizable template for future evaluations of the evidence

Research Needs

This is not an intractable problem; See Handout

Each of the three major sections of the report ends with a chapter on research needs with specific suggestions to:

- 1. Address Gaps in Substantive Knowledge
- 2. Improve Research Methods and Quality

Research Needs, for example

- Research into e-cigarette device and liquid characteristics to inform product standards
- Cohort studies to compare clinical and subclinical heath outcomes among e-cigarette users vs. combustible tobacco users
- Observational studies to assess the relationship between youth use of e-cigarettes and subsequent progression to regular smoking of combustible tobacco products
- Randomized controlled trials of the effectiveness of e-cigarettes as cessation aids, especially compared with FDA-approved smoking cessation aids

Summary

- While e-cigarettes are not without health risks, they are likely to be far less harmful than combustible tobacco cigarettes.
- E-cigarettes contain fewer numbers and lower levels of toxic substances than conventional cigarettes
- The long-term health effects of e-cigarettes are not yet clear.

Summary

- Using e-cigarettes may help adults who smoke combustible tobacco cigarettes quit smoking, but more research is needed.
- Among youth, e-cigarette use increases the risk of initiating smoking combustible tobacco cigarettes.

CONSENSUS STUDY REPORT

Public Health Consequences of **E-Cigarettes**

nationalacademies.org/ eCigHealthEffects

to download the full report

For more information, Kathleen Stratton (kstratton@nas.edu)

Thank you!

The National Academies of Academies