Skip to main content
Consensus Study Report

VIEW LARGER COVER

The human-mediated introduction of species to regions of the world they could never reach by natural means has had great impacts on the environment, the economy, and society. In the ocean, these invasions have long been mediated by the uptake and subsequent release of ballast water in ocean-going vessels. Increasing world trade and a concomitantly growing global shipping fleet composed of larger and faster vessels, combined with a series of prominent ballast-mediated invasions over the past two decades, have prompted active national and international interest in ballast water management.

Assessing the Relationship Between Propagule Pressure and Invasion Risk in Ballast Water informs the regulation of ballast water by helping the Environnmental Protection Agency (EPA) and the U.S. Coast Guard (USCG) better understand the relationship between the concentration of living organisms in ballast water discharges and the probability of nonindigenous organisms successfully establishing populations in U.S. waters. The report evaluates the risk-release relationship in the context of differing environmental and ecological conditions,including estuarine and freshwater systems as well as the waters of the three-mile territorial sea. It recommends how various approaches can be used by regulatory agencies to best inform risk management decisions on the allowable concentrations of living organisms in discharged ballast water in order to safeguard against the establishment of new aquatic nonindigenous species, and to protect and preserve existing indigenous populations of fish, shellfish, and wildlife and other beneficial uses of the nation's waters.

Assessing the Relationship Between Propagule Pressure and Invasion Risk in Ballast Water provides valuable information that can be used by federal agencies, such as the EPA, policy makers, environmental scientists, and researchers.

RESOURCES AT A GLANCE

Suggested Citation

National Research Council. 2011. Assessing the Relationship Between Propagule Pressure and Invasion Risk in Ballast Water. Washington, DC: The National Academies Press. https://doi.org/10.17226/13184.

Import this citation to:

Publication Info

156 pages |  6 x 9 | 

ISBNs: 
  • Paperback:  978-0-309-21562-6
  • Ebook:  978-0-309-21565-7
DOI: https://doi.org/10.17226/13184

What is skim?

The Chapter Skim search tool presents what we've algorithmically identified as the most significant single chunk of text within every page in the chapter. You may select key terms to highlight them within pages of each chapter.

Copyright Information

The National Academies Press (NAP) has partnered with Copyright Clearance Center's Marketplace service to offer you a variety of options for reusing NAP content. Through Marketplace, you may request permission to reprint NAP content in another publication, course pack, secure website, or other media. Marketplace allows you to instantly obtain permission, pay related fees, and print a license directly from the NAP website. The complete terms and conditions of your reuse license can be found in the license agreement that will be made available to you during the online order process. To request permission through Marketplace you are required to create an account by filling out a simple online form. The following list describes license reuses offered by the NAP through Marketplace:

  • Republish text, tables, figures, or images in print
  • Post on a secure Intranet/Extranet website
  • Use in a PowerPoint Presentation
  • Distribute via CD-ROM
  • Photocopy

Click here to obtain permission for the above reuses. If you have questions or comments concerning the Marketplace service, please contact:

Marketplace Support
International +1.978.646.2600
US Toll Free +1.855.239.3415
E-mail: support@copyright.com
marketplace.copyright.com

To request permission to distribute a PDF, please contact our Customer Service Department at customer_service@nap.edu.

loading iconLoading stats for Assessing the Relationship Between Propagule Pressure and Invasion Risk in Ballast Water...